ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-17
    Description: The nonequilibrium chemical processes of nitric oxide formation are computed for the wake of the Tunguska meteor of 1908. The wake characteristics are derived by carrying out an optically-thick radiation field analysis for ablation of the meteoroid. The wake flow field is approximated by a one-dimensional, well-stirred reactor model. Known characteristics of the Tunguska event are imposed as constraints, and three controlling parameters - chemical composition, density, and velocity - are varied over a range around the values derived by Korobeinikov et al. (1976) and Petrov and Stulov (1975). The calculation shows that at least 19 million tons of nitric oxide is produced between the altitudes of 10 and 50 km. The anomalous atmospheric phenomena following the event are attributed to the reactions involving nitric oxide thus produced and atmospheric ozone. It is speculated that the nitric oxide produced by the event fertilized the area near the fall, causing the observed rapid plant growth.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Acta Astronautica; 5; July-Aug
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-17
    Description: The process by which odd nitrogen species (atomic nitrogen and nitric oxide) are formed during atmospheric entry of meteoroids is analyzed theoretically. An ablating meteoroid is assumed to be a point source of mass with a continuum regime evolving in its wake. The amounts of odd nitrogen species, produced by high-temperature reactions of air in the continuum wake, are calculated by numerical integration of chemical rate equations. Flow properties are assumed to be uniform across the wake, and 29 reactions involving five neutral species and five singly ionized species are considered, as well as vibrational and electron temperature nonequilibrium phenomena. The results, when they are summed over the observed mass, velocity, and entry-angle distribution of meteoroids, provide odd-nitrogen-species annual global production rates as functions of altitude. The peak production of nitric oxide is found to occur at an altitude of about 85 km; atomic nitrogen production peaks at about 95 km. The total annual rate for nitric oxide is 40 million kg; for atomic nitrogen it is 170 million kg.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research; 83; Aug. 20
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...