ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • LUNAR AND PLANETARY EXPLORATION  (6)
  • 1
    Publication Date: 2011-08-24
    Description: Doppler tracking data of three orbiting spacecraft have been reanalyzed to develop a new gravitational field model for the planet Mars, Goddard Mars Model 1 (GMM-1). This model employs nearly all available data, consisting of approximately 1100 days of S band tracking data collected by NASA's Deep Space Network from the Mariner 9 and Viking 1 and Viking 2 spacecraft, in seven different orbits, between 1971 and 1979. GMM-1 is complete to spherical harmonic degree and order 50, which corresponds to a half-wavelength spatial resolution of 200-300 km where the data permit. GMM-1 represents satellite orbits with considerably better accuracy than previous Mars gravity models and shows greater resolution of identifiable geological structures. The notable improvement in GMM-1 over previous models is a consequence of several factors: improved computational capabilities, the use of otpimum weighting and least squares collocation solution techniques which stabilized the behavior of the solution at high degree and order, and the use of longer satellite arcs than employed in previous solutions that were made possible by improved force and measurement models. The inclusion of X band tracking data from the 379-km altitude, nnear-polar orbiting Mars Observer spacecraft should provide a significant improvement over GMM-1, particularly at high latitudes where current data poorly resolve the gravitational signature of the planet.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; E11; p. 20,871-20,889
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: A spherical harmonic model of the gravitational field of Venus complete to degree and order 50 has been developed using the S-band Doppler tracking data of the Pioneer Venus Orbiter (PVO) collected between 1979 and 1982. The short wavelengths of this model could only be resolved near the PVO periapse location (about 14 deg N latitude), therefore a priori constraints were applied to the model to bias poorly observed coefficients towards zero. The resulting model has a half-wavelength resolution of 400 km near the PVO periapse location, but the resolution degrades to greater than 1000 km near the poles. This gravity model correlates well with a degree 50 spherical harmonic expansion of the Venus topography derived from a combination of Magellan and PVO data. New tracking data from Magellan's gravity mission should provide some improvement to this model, although a complete model of the Venusian gravity field will depend on tracking of Magellan after the circularization of its orbit using aerobraking.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Geophysical Research Letters (ISSN 0094-8276); 20; 7; p. 599-602.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: Understanding the origin and evolution of major photographic features on Mars, such as the hemispheric dichotomy and Tharsis rise, will require improved resolution of that planet's gravitational and topographic fields. The highest resolution gravity model for Mars published to date was derived from Doppler tracking data from the Mariner 9 and Viking 1 and 2 spacecraft, and is of 18th degree and order. That field has a maximum spatial resolution of approx. 600 km, which is comparable to that of the best topographic model. The resolution of previous gravity models was limited not by data density, but rather by the computational resources available at the time. Because this restriction is no longer a limitation, the Viking and Mariner data sets were reanalyzed and a gravitational field was derived complete to the 40th degree and order with a corresponding maximum spatial resolution of 300 km where the data permit.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: NASA, Washington, Reports of Planetary Geology and Geophysics Program, 1990; p 85-86
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-01-25
    Description: The effective elastic thickness (h) of the lithosphere provides a measure of the thermal and mechanical state of a planet's shallow interior. An estimate of h in the vicinity of a feature that constitutes a load on a planetary surface can be determined from the flexural response of the lithosphere to the load. This approach has been applied to Mars by calculating radial stresses associated with lithospheric flexure associated with surface loads, and comparing the results to the positions of circumferential graben surrounding the major Martian shield volcanoes and mascon basins. However, many prominent surface loads on Mars, most notably the Olympus Mons volcano, do not exhibit flexural graben. In these instances application of the above method can provide only a lower limit of effective elastic thickness. An alternative method of determining h is to calculate the vertical displacements associated with the flexural loading and to compare the amplitude and shape of the flexural profile to observed topography. This method has not been applied to flexural problems on Mars because of the poor resolution of Martian topographic data. However, previous analyses have shown that the lithosphere around major volcanic shields should exhibit vertical deflections of order 1 km over horizontal baselines of order 100 km. We were thus motivated to search for the presence of flexural troughs in the existing Mars topography data.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z; p 1591-1592
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-01-25
    Description: Knowledge of the gravitational field, in combination with surface topography, provides one of the principal means of inferring the internal structure of a planetary body. The highest resolution gravitational field for Mars published thus far was derived from Doppler tracking data from the Mariner 9 and Viking 1 and 2 spacecraft and is complete to degree and order 18 corresponding to a half wavelength resolution of approximately 600 km. This field, which is characterized by a spatial resolution that is slightly better than that of the highest resolution (16x16) topographic model, has been utilized extensively in analyses of the state of stress and isostatic compensation of the Martian lithosphere. However, the resolution and quality of current gravity and topographic fields are such that the origin and evolution of even the major physiographic features on Mars, such as the hemispheric dichotomy and Tharsis rise, are not well understood. We have re-analyzed the Viking and Mariner data sets and have derived a new gravitational field, which we designated GMM-1 (Goddard Mars Model-1). This model is complete to spherical harmonic degree and order 50 with a corresponding (half wavelength) spatial resolution of 200-300 km where the data permit. In contrast to previous models, GMM-1 was solved to as high degree and order as necessary to nearly exhaust the attenuated gravitational signal contained in the tracking data.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Inst., Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z; p 1317-1318
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: The paper describes the results from the development of improved high-resolution gravity models of Mars and Venus carried out at Goddard Space Flight Center, together with the solution design and the tracking data employed. These models are spherical harmonic expansions complete to degrees 50 and 36 for Mars and Venus, respectively. Both models result in improved orbital computation accuracies over previously available models, and in improved resolution of geophysical features. The paper also discusses new developments anticipated in the future.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: In: From Mars to Greenland: Charting gravity with space and airborne instruments - Fields, tides, methods, results (A93-55951 24-46); p. 11-27.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...