ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • LUNAR AND PLANETARY EXPLORATION  (2)
  • 1
    Publication Date: 2019-01-25
    Description: There are good reasons to believe that lunar volcanic glasses originated from a deep interior source. The presence of a thin layer of surface correlated elements on these glasses may indicate that the Moon has some reservoirs that are enriched in volatiles. Since the glasses themselves do not show similar enrichment, the source should be of limited extent. Three scenarios are advanced for the origin of these elements. The mechanism for lunar volcanism differs from the mechanism for volcanism on Earth since the former produces bubbling and the latter explosive fountaining. From the condensation behavior of the volatile compounds, which leads to heterogeneous condensation, it is concluded that comparing element ratios of surface correlated elements gives little sense. It seems as if the volatile reservoirs are of rather limited extent and that they do not enlarge the volatile content of the bulk Moon significantly.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar Planetary Inst. Conf. on the Origin of the Moon; p 23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: The Nd and Sr isotopic compositions of Australasian tectites (including two flanged Australian tectites, two low-SiO2 Muong Nong-type tectites, and three high-SiO2 Muong Nong-type tectites) and the Nd, Sm, Sr, and Rb concentrations were investigated by isotope-dilution thermal ionization mass spectrometry, and the Sm-Nd and Rb-Sr isotope systematics were used to study the characteristics of the parental material. It is shown that the Nd and Sr isotopic data provide evidence that all Australasian tektites were derived from a single sedimentary formation with a narrow range of stratigraphic ages close to 170 Ma. It is suggested that all of the Australasian tektites were derived from a single impact event and that the australites represent the upper part of a melt sheet ejected at high velocity, whereas the indochinites represent melts formed at a lower level in the target material distributed closer to the area of the impact.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Geochimica et Cosmochimica Acta (ISSN 0016-7037); 56; 483-492
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...