ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Solar Physics  (10)
  • LUNAR AND PLANETARY EXPLORATION  (7)
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Anomalous cosmic rays (ACRs) are interstellar neutrals that drift into the heliosphere, become singly ionized, and are convected to the termination shock of the solar wind, where they are thought to be accelerated to hundreds of MeV. Because their effective origin is at the termination shock, studies of their gradients and spectral shape can reveal important clues about the shock's location, its strength, and the source flux of ACRs. Recently, such studies have predicted that one or more of the Voyager and Pioneer spacecraft may cross the termination shock in the next few years. In addition, there have been studies of galactic cosmic rays that shed new light on the location of the modulation boundary of these particles, which may be the heliopause region. In this talk, we will review these observations and the information they provide about the boundaries of the heliosphere.
    Keywords: Solar Physics
    Type: ; 51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-08
    Description: We have examined the FIP fractionation effects on the average composition of the small SEP events, and discuss the ensuing implications for the origin and acceleration of nuclei in these events.
    Keywords: Solar Physics
    Type: 27th Internationaal Cosmic Ray Conference Proceedings|27th Internationaal Cosmic Ray Conference; Hamburg; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-08
    Keywords: Solar Physics
    Type: Solar Wind 10 Conference; Pisa; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-27
    Description: The equilibrium latitude and the period of oscillations about this equilibrium latitude are calculated for a plasma in a centrifugally dominated tilted dipole magnetic field representing Jupiter's inner magnetosphere. It is found that for a hot plasma the equilibrium latitude in the magnetic equator, for a cold plasma it is the centrifugal equator, and for a warm plasma it is somewhere in between. An illustrative model is adopted in which atoms are sputtered from the Jupiter-facing hemisphere of Io and escape Io's gravity to be subsequently ionized some distance from Io. Finally, it is shown that ionization generally does not occur at the equilibrium altitude, and that the resulting latitudinal oscillations provide an explanation for the irregularities in electron concentration within the torus, as reported by the radioastronomy experiment aboard Voyager I.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Geophysical Research; 85; May 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: Voyager 1 provided the first look at Saturn's magnetotail and magnetosphere during relatively quiet interplanetary conditions. This report discusses the energetic particle populations of the outer magnetosphere of Saturn and absorption features associated with Titan and Rhea, and compares these observations with Pioneer 11 data of a year earlier. The trapped proton fluxes had soft spectra, represented by power laws in kinetic energy with an exponent of 7 in the outer magnetosphere and 9 in the magnetotail. Structure associated with the magnetotail was observed as close as 10 Saturn radii on the outbound trajectory. The proton and electron fluxes in the outer magnetosphere and in the magnetotail were variable and appeared to respond to changes in interplanetary conditions. Protons with energies greater than or approximately equal to 2 MeV had free access to the magnetosphere from interplanetary space and were not stably trapped outside about 7.5 Saturn radii.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Science; 212; Apr. 10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-27
    Description: The passage of Voyager 2 through the Jovian magnetosphere demonstrated that this magnetosphere is highly variable, even as close as 10 Jupiter radii from the planet. The cosmic-ray subsystem measured the flux, elemental composition, and anisotropy of energetic particles. Its high sensitivity was particularly valuable during the long passage through the magnetotail, where particle fluxes were orders of magnitude less than in the inner magnetosphere and approached interplanetary values. The new data confirm earlier observations that the Jovian magnetosphere is a giant accelerator of particles - electrons, protons, and heavy ions, including sulfur. Both spatial and temporal changes are observed in the magnetosphere as compared to prior observations with Pioneer 10 and 11 and Voyager 1. It is suggested that the 10-hr modulation of interplanetary Jovian electrons may be associated with the arrival at the dawn magnetopause of a rarefaction region each planetary rotation.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Science; 206; Nov. 23
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: We report on observations of the abundances of elements from Helium to Nickel in over 50 different solar energetic particle events using the Solar Isotope Spectrometer (SIS) on-board the Advanced Composition Explorer (ACE) spacecraft. It had originally been expected that the energy spectra of different elements would show spectral roll-overs at energies related to the Q/M ratio of each element. Due to the partial stripping of Fe and essentially complete stripping of O, it was expected that the Fe/O ratio would be observed to decrease with increasing energy. While many events show this pattern, others have Fe/O which is constant with energy, while for yet others Fe/O actually increases with energy. Events having constant Fe/O could simply have their spectral breaks outside of the observed energy range. However, events which show increasing Fe/O cannot be explained within the framework of spectral breaks. Possible explanations include injection of remnant heavy ions from earlier impulsive events, hybrid Events consisting of a combination of flare-accelerated and shock-accelerated particles from a single solar event, and some new physical process in shock acceleration. We will report on efforts to distinguish these possible explanations.
    Keywords: Solar Physics
    Type: COSPAR 2004; Jul 18, 2004 - Jul 25, 2004; Paris; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: One of the major goals of NASA's Solar Probe Plus (SPP) mission is to determine the mechanisms that accelerate and transport high-energy particles from the solar atmosphere out into the heliosphere. Processes such as coronal mass ejections and solar flares, which peak roughly every 11 years around solar maximum, release huge quantities of energized matter, magnetic fields and electromagnetic radiation into space. The high-energy particles, known as solar energetic particles or SEPs, present a serious radiation threat to human explorers living and working outside low-Earth orbit and to technological assets such as communications and scientific satellites in space. This talk describes the Integrated Science Investigation of the Sun (ISIS) - Energetic Particle Instrument suite. ISIS measures key properties such as intensities, energy spectra, composition, and angular distributions of the low-energy suprathermal source populations, as well as the more hazardous, higher energy particles ejected from the Sun. By making the first-ever direct measurements of the near-Sun regions where the acceleration takes place, ISIS will provide the critical measurements that, when integrated with other SPP instruments and with solar and interplanetary observations, will lead to a revolutionary new understanding of the Sun and major drivers of solar system space weather.
    Keywords: Solar Physics
    Type: GSFC.CPR.4541.2011 , 32nd International Cosmic Ray Conference (ICRC2011); Aug 11, 2011 - Aug 18, 2011; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-27
    Description: The observations of the cosmic-ray subsystem have added significantly to our knowledge of Jupiter's magnetosphere. The most surprising result is the existence of energetic sulfur, sodium, and oxygen nuclei with energies above 7 MeV per nucleon which were found inside of Io's orbit. Also, significant fluxes of similarly energetic ions reflecting solar cosmic-ray composition were observed throughout the magnetosphere beyond 11 times the radius of Jupiter. It was also found that energetic protons are enhanced by 30 to 70% in the active hemisphere. Finally, the first observations were made of the magnetospheric tail in the dawn direction out to 160 Jupiter radii.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Science; 204; June 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: Results from the cosmic-ray system on Voyager 2 in Saturn's magnetosphere are presented. During the inbound pass through the outer magnetosphere, the not less than 0.43-million-electron-volt proton flux was more intense, and both the proton and electron fluxes were more variable, than previously observed. These changes are attributed to the influence on the magnetosphere of variations in the solar wind conditions. Outbound, beyond 18 Saturn radii, impulsive bursts of 0.14to greater than 1.0-million-electron-volt electrons were observed. In the inner magnetosphere, the charged particle absorption signatures of Mimas, Enceladus, and Tethys are used to constrain the possible tilt and offset of Saturn's internal magnetic dipole. At approximately 3 Saturn radii, a transient decrease was observed in the electron flux which was not due to Mimas. Characteristics of this decrease suggest the existence of additional material, perhaps another satellite, in the orbit of Mimas.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Science; 215; Jan. 29
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...