ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • LUNAR AND PLANETARY EXPLORATION  (3)
  • Cation concentration  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 77 (1984), S. 347-365 
    ISSN: 1573-5036
    Keywords: Barley ; Ca ; Cation activity ; Cation activity ratio ; Cation concentration ; Ion uptake ; Mg ; Mustard ; K ; Leek ; Lettuce ; Soil solution ; Spinach ; Uptake capacity ; Uptake ratio ; Net inflow
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary In pot experiments with barley, mustard, leek, lettuce and spinach, and in a field experiment with 30 cultivars of barley uptakes of K, Mg, Ca, Na and N were studied at varying concentrations and activities of these cations in the soil solution. The sum of macro cations (K, Mg, Ca, Na) in meq per 100 g aerial plant parts were independent of the chemical composition of the soil solution, but dependent on plant species and on the N concentration in the plant. The ratios $$(\bar I_{Mg} /\bar I_{Ca} and \bar In_K /2(\bar In_{Ca} + \bar In_{Mg} ))$$ of mean net inflows of Mg, Ca and K into plants and corresponding cation activity ratios (aMg/aCa and $$a_K /\sqrt {a_{Ca} + a_{Mg} } $$ ) in the soil solution were linearly related and highly correlated under conditions in which growth rate and/or rate of incorporation into new tissues constituted the rate determining step of cation uptake. Consequently, mean net inflows of K, Mg and Ca were independent of ion concentration and ion activity of K, Mg or Ca in the soil solution under the conditions of constant activity ratio. The results agree with the concept that plants have a finite cation uptake capacity, and that plants are in a equilibrium-like state with the activities of K, Mg, and Ca ions in the soil solution. The results indicate that both ratios and content of exchangeable cations should be considered in our evaluation of soil test data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Science Conference; Mar 19, 1979 - Mar 23, 1979; Houston, TX
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Lunar olivines from anorthosites, granulitic impactites, and rocks in the Mg-rich plutonic trend were subjected to electron probe measurements for Al, P, Ca, Ti, Cr and Mn, which show that the FeO/MnO ratio for lunar olivines lies between 80 and 110 with little difference among the rock types. The low values of Ca in lunar olivines indicate slow cooling to subsolidus temperatures, with blocking temperatures of about 750 C for 67667 and 1000 C for 60255,73-alpha determined by the Finnerty and Boyd (1978) experiments. An important paradox is noted in the low Ti content of Fe-rich olivines from anorthosites, although both Ti and Fe tend to become enriched in liquid during fractional distillation. Except for Ca and Mn, olivine from anorthosites has lower minor element values than other rock types. Formation from a chemically distinct system is therefore implied.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Science Conference; Mar 17, 1980 - Mar 21, 1980; Houston, TX
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The petrography and mineral chemistry of 67667 lherzolite suggests cataclasis of a fine-grained high-temperature rock, perhaps formed as a cumulate in a high-level pluton. With the exception of the Sr content of plagioclase, the mineral chemistry fits with that of major rock types ascribed to the lunar crust. No evidence is found to favor a relationship between 67667 and present-day meteorites falling on the earth.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Lunar and Planetary Science Conference; Mar 17, 1980 - Mar 21, 1980; Houston, TX
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...