ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 11 (1991), S. 190-195 
    ISSN: 1432-0789
    Keywords: Knallgas bacteria ; Soil enzymes ; H2 oxidation kinetics ; Uptake hydrogenase (hup) ; Acetylene reduction assay
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The rate of H2 release from broad beans (Vicia faba) infected with Rhizobium leguminosarum Hup- was much faster than from beans infected with the Hup+ strain. Acetylene reduction and H2 release were abolished by cutting the plants down, by incubation in darkness, or after the addition of ammonium, indicating that the H2 was released by N2-fixing bacterial symbionts. In laboratory cultures using non-sterile soil, the bean plants released H2 until an equilibrium between H2 production and H2 oxidation was reached. The H2 equilibrium concentration was higher in Hup--infected bean cultures (about 3 ppm H2 in the gas phase) than in Hup+-infected cultures (0.3 ppm H2) because of the higher H2 production. The H2 release from Hup--infected bean cultures in sterile soil did not reach equilibrium. An equilibrium occurred, if Knallgas bacteria were added. However, the equilibrium value was higher (13 ppm H2) than in non-sterile soil, which seemed to be more efficient at H2 oxidation. The Knallgas bacteria exhibited a relatively high K m for H2 (〉 1300 ppmv H2); this activity was observed in unplanted non-sterile soil, and in nonsterile soil planted with Hup+-infected beans or planted with Hup--infected beans which had been cut down before being assayed. All these soils also showed a second, low-K m (〈50 ppm) level of H2 oxidation activity, which was presumably due to abiontic soil enzymes. In contrast, only one level of activity, which had an intermediate K m (about 200 ppm H2), was observed when the soil was planted with Hup--infected beans. The origin of this activity, which was only observed in the presence of intact, H2-producing beans, is still unknown.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 12 (1991), S. 127-130 
    ISSN: 1432-0789
    Keywords: Soil hydrogenase ; Knallgas bacteria ; pH optimum ; Temperature optimum ; Apparent activation energy ; Seasonal change
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Hydrogen oxidation in soil was measured at low (1 ppmv) and high (300 ppmv) H2 concentrations to distinguish between the activities of abiontic soil hydrogenases and Knallgas bacteria, respectively. The two activities also showed distinctly different pH optima, temperature optima, and apparent activation energies. The pH optima for the soil hydrogenase activities were similar to the soil pH in situ, i.e., pH 8 in an slightly alkaline garden soil (pH 7.3) and pH 5 in an acidic cambisol (pH 4.6–5.4). Most probable number determinations in the alkaline acidic soils showed that Knallgas bacterial populations grew preferentially in neutral or acidic media, respectively. However, H2 oxidation activity by Knallgas bacteria in the acidic soil showed two distinct pH optima, one at pH 4 and a second at pH 6.4–7.0. The soil hydrogenase activities exhibited temperature optima at 35–40°C, whereas the Knallgas bacteria had optima at 50–60°C. The apparent activation energies of the soil hydrogenases were lower (11–23kJ mol-1) than those of the Knallgas bacteria (51–145 kJ mol-1). Most of the soil hydrogenase activity was located in the upper 10 cm of the acidic cambisol and changed with season. The seasonal activity changes were correlated with changes in soil moisture and soil pH.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...