ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (1)
  • Chemistry  (1)
  • Key words Transcriptional regulation  (1)
  • Key words Pollen  (1)
  • 1995-1999  (4)
  • 1
    ISSN: 1432-0983
    Keywords: Key words Transcriptional regulation ; Phospholipid biosynthesis ; Saccharomyces cerevisiae ; INO2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Expression of structural genes of phospholipid biosynthesis in yeast is mediated by the inositol/choline-responsive element (ICRE). ICRE-dependent gene activation, requiring the regulatory genes INO2 and INO4, is repressed in the presence of the phospholipid precursors inositol and choline. INO2 and, to a less extent, INO4 are positively autoregulated by functional ICRE sequences in the respective upstream regions. However, an INO2 allele devoid of its ICRE functionally complemented an ino2 mutation and completely restored inositol/choline regulation of Ino2p-dependent reporter genes. Low-level expression of INO2 and INO4 genes, each under control of the heterologous MET25 promoter, did not alter the regulatory pattern of target genes. Thus, upstream regions of INO2 and INO4 are not crucial for transcriptional control of ICRE-dependent genes by inositol and choline. Interestingly, over-expression of INO2, but not of INO4, counteracted repression by phospholipid precursors. Possibly, a functional antagonism between INO2 and a negative regulator is the key event responsible for repression or de-repression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 10 (1997), S. 101-106 
    ISSN: 1432-2145
    Keywords: Key words Pollen ; Pollen competition ; Pollen performance ; Microgametophyte
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  We examined the influence of pollen competitive environment on pollen performance in Mirabilis jalapa. We used the number of pollen grains and the number of pollen tubes per pistil as measures of pollen competition. Pollen germination, pollen tube penetration into the style, and pollen tube growth rates were used as measures of pollen performance. All three measures of pollen performance were affected by the competitive environment. Pollen germination was greatest at intermediate pollen load sizes. The percentage of germinated pollen grains that penetrated the stigma and grew into the style decreased with pollen load size. Pollen tube growth rate in the style was greater and more variable with larger numbers of pollen tubes in the style. Controlling for the degree of selection at the stigma indicated that pollen-pollen or pollen-style interactions were the likely causes of increased growth rates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0935-9648
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 17 (1995), S. 959-965 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In the yeast Saccharomyces cerevisiae three positive transcriptional control elements are activated by stress conditions: heat shock elements (HSEs), stress response elements (STREs) and AP-1 responsive elements (AREs). HSEs bind heat shock transcription factor (HSF), which is activated by stress conditions causing accumulation of abnormal proteins. STREs mediate transcriptional activation by multiple stress conditions. They are controlled by high osmolarity via the HOG signal pathway, which comprises a MAP kinase module and a two-component system homologous to prokaryotic signal transducers. AREs bind the transcription factor Yap1p. The three types of control elements seem to have overlapping, but distinct functions. Some stress proteins encoded by HSE-regulated genes are necessary for growth of yeast under moderate stress, products of STRE-activated genes appear to be important for survival under severe stress and ARE-controlled genes may mainly function during oxidative stress and in the response to toxic conditions, such as caused by heavy metal ions.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...