ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (1)
  • Chemistry  (1)
  • Key words Finite elements, statistical equivalent linearization, component-mode synthesis, complex modal analysis, random eigenvalue problem, hysteresis, damping  (1)
  • Key words Pollen  (1)
  • 1995-1999  (4)
Collection
Keywords
Publisher
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Sexual plant reproduction 10 (1997), S. 101-106 
    ISSN: 1432-2145
    Keywords: Key words Pollen ; Pollen competition ; Pollen performance ; Microgametophyte
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  We examined the influence of pollen competitive environment on pollen performance in Mirabilis jalapa. We used the number of pollen grains and the number of pollen tubes per pistil as measures of pollen competition. Pollen germination, pollen tube penetration into the style, and pollen tube growth rates were used as measures of pollen performance. All three measures of pollen performance were affected by the competitive environment. Pollen germination was greatest at intermediate pollen load sizes. The percentage of germinated pollen grains that penetrated the stigma and grew into the style decreased with pollen load size. Pollen tube growth rate in the style was greater and more variable with larger numbers of pollen tubes in the style. Controlling for the degree of selection at the stigma indicated that pollen-pollen or pollen-style interactions were the likely causes of increased growth rates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archive of applied mechanics 69 (1999), S. 765-784 
    ISSN: 1432-0681
    Keywords: Key words Finite elements, statistical equivalent linearization, component-mode synthesis, complex modal analysis, random eigenvalue problem, hysteresis, damping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary This paper focuses on the stochastic dynamic response of structures modeled by finite elements with a relatively large number of degrees of freedom. FE models with nonlinearities and uncertain (stochastic) system properties are discussed. It is shown that component mode synthesis can be used most advantageously to solve the issue of computational efficiency and feasibility. The stochastic response due to stochastic loading of large FE models with nonlinear elements is determined by statistical equivalent linearization (EQL). The developed component-mode synthesis allows to determine the complex modal properties of arbitrary large linearized finite element models. Nonsymmetric structural matrices, as a result of the EQL, and filters for modeling of filtered white noise can be treated by the suggested approach. Since the efficiency of the procedure is nearly independent of the number of degrees-of-freedom (DOF) involved, statistical equivalent linearization becomes applicable for arbitrary detailed FE models. Furthermore, the dynamic response of FE models with uncertain or stochastic system properties is discussed. In this case, Monte Carlo simulation is suggested as the most appropriate approach for FE models. The paper focuses on the random eigenvalue problem for large FE systems as the computationally most demanding part of the dynamic analysis. Component-mode synthesis is used to provide in an efficient manner all the eigenvalue solutions of the FE system needed by the Monte Carlo simulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0935-9648
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 17 (1995), S. 959-965 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: In the yeast Saccharomyces cerevisiae three positive transcriptional control elements are activated by stress conditions: heat shock elements (HSEs), stress response elements (STREs) and AP-1 responsive elements (AREs). HSEs bind heat shock transcription factor (HSF), which is activated by stress conditions causing accumulation of abnormal proteins. STREs mediate transcriptional activation by multiple stress conditions. They are controlled by high osmolarity via the HOG signal pathway, which comprises a MAP kinase module and a two-component system homologous to prokaryotic signal transducers. AREs bind the transcription factor Yap1p. The three types of control elements seem to have overlapping, but distinct functions. Some stress proteins encoded by HSE-regulated genes are necessary for growth of yeast under moderate stress, products of STRE-activated genes appear to be important for survival under severe stress and ARE-controlled genes may mainly function during oxidative stress and in the response to toxic conditions, such as caused by heavy metal ions.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...