ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Discontinuous Boundary Elements  (1)
  • Key words Arbuscular mycorrhizal fungi  (1)
  • 1
    ISSN: 1432-1890
    Keywords: Key words Arbuscular mycorrhizal fungi ; Internal transcribed spacer ; Ribosomal DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The 5.8 S subunit and flanking internal transcribed spacer (ITS) regions in nuclear ribosomal DNA (rDNA) from spores of Glomus mosseae FL156 and UK118 were amplified by polymerase chain reaction (PCR) using ITS1 and ITS4 as primers. The amplification product from template DNA of UK118 was cloned and sequenced (569 bp); the amplified DNA from FL156 was sequenced directly (582 bp). There was a 95% sequence similarity between DNAs amplified from the two isolates; in contrast, major dissimilarities with partial sequences of seven other glomalean taxa were observed. Four oligonucleotide sequences unique to Glomus mosseae were identified as potential primers. Their specificity to Glomus mosseae was assessed by PCR amplification of genomic DNA from spores from 36 glomalean fungi: 13 isolates of Glomus mosseae, two Glomus monosporum, 10 other Glomus isolates, and 11 other glomalean taxa from each of four other genera. The Glomus mosseae isolates were from a broad range of temperate zone agricultural soils. Oligonucleotide pair GMOS1 : GMOS2 primed specific amplification of an oligonucleotide sequence (approximately 400 bp) present in all Glomus mosseae isolates and two isolates of the closely related Glomus monosporum. This primer pair did not prime PCR when the template consisted of DNA from any of the other glomalean fungi or any of the nonmycorrhizal controls. In addition, a 24-mer oligonucleotide, designated GMOS5, hybridized with Glomus mosseae and Glomus monosporum DNA amplified by PCR using primer pairs ITS1 : ITS4 and GMOS1 : GMOS2. Colony-blot assays showed that GMOS5 hybridized to 100% and 97% of E. coli pUC19 clones of amplification products from Glomus mosseae FL156 and UK118 DNA templates, respectively, indicating that nearly all clones contained an homologous sequence. GMOS5 was used successfully to detect specifically Glomus mosseae in DNA extracted from colonized sudan grass (Sorghum sudanense L.) roots and amplified by PCR using the primer pair GMOS1 : GMOS2. The results confirm several previous indications that Glomus mosseae and Glomus monosporum are indistinguishable taxonomic entities.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    International Journal for Numerical Methods in Fluids 2 (1982), S. 239-251 
    ISSN: 0271-2091
    Keywords: Regular ; Discontinuous Boundary Elements ; Fluid Flow ; Engineering ; Engineering General
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The Boundary Element Method is now well established as a valid numerical technique for the solution of field problems, equal to the Finite Element Method in generality and surpassing it in computational efficiency in some cases.1 In this paper is presented a 'Regular Boundary Element Method' as applied to inviscid laminar fluid flow problems. It involves the formation of a system of regular integral equations obtained by moving the singularity outside the domain of the given problem. It is also shown that non-conforming elements may be used whereby freedoms are not defined at the geometric nodes under the boundary element discretization. A linear element is developed here; higher order variants could easily be defined. Satisfactory numerical results have been obtained using the proposed regular method with both conventional (continuous across the boundary) and non-conforming boundary elements for two-dimensional inviscid laminar fluid flow problems having regular and singular solutions.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...