ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Fungi  (1)
  • Key words: Divergence time — Molecular clock — Aldolase — Triose phosphate isomerase — Sponge — Amphioxus — Evolution  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 41 (1995), S. 238-246 
    ISSN: 1432-1432
    Keywords: Cellular slime molds ; Animals ; Fungi ; Plantae ; Maximum-likelihood method ; Evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The phylogenetic position of Dictyostelium inferred from 18S rRNA data contradicts that from protein data. Protein trees always show the close affinity of Dictyostelium with animals, fungi, and plants, whereas in 18S rRNA trees the branching of Dictyostelium is placed at a position before the massive radiation of protist groups including the divergence of the three kingdoms. To settle this controversial issue and to determine the correct position of Dictyostelium, we inferred the phylogenetic relationship among Dictyostelium and the three kingdoms Animalia, Fungi, and Plantae by a maximum-likelihood method using 19 different protein data sets. It was shown at the significance level of 1 SE that the branching of Dictyostelium antedates the divergence of Animalia and Fungi, and Plantae is an outgroup of the Animalia-Fungi-Dictyostelium clade.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1432
    Keywords: Key words: Divergence time — Molecular clock — Aldolase — Triose phosphate isomerase — Sponge — Amphioxus — Evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. Previously we suggested that four proteins including aldolase and triose phosphate isomerase (TPI) evolved with approximately constant rates over long periods covering the whole animal phyla. The constant rates of aldolase and TPI evolution were reexamined based on three different models for estimating evolutionary distances. It was shown that the evolutionary rates remain essentially unchanged in comparisons not only between different classes of vertebrates but also between vertebrates and arthropods and even between animals and plants, irrespective of the models used. Thus these enzymes might be useful molecular clocks for inferring divergence times of animal phyla. To know the divergence time of Parazoa and Eumetazoa and that of Cephalochordata and Vertebrata, the aldolase cDNAs from Ephydatia fluviatilis, a freshwater sponge, and the TPI cDNAs from Ephydatia fluviatilis and Branchiostoma belcheri, an amphioxus, have been cloned and sequenced. Comparisons of the deduced amino acid sequences of aldolase and TPI from the freshwater sponge with known sequences revealed that the Parazoa–Eumetazoa split occurred about 940 million years ago (Ma) as determined by the average of two proteins and three models. Similarly, the aldolase and TPI clocks suggest that vertebrates and amphioxus last shared a common ancestor around 700 Ma and they possibly diverged shortly after the divergence of deuterostomes and protostomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...