ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0827
    Keywords: Key words: Bone density — Vitamin D receptor — Polymorphism — Growth — Genetic.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Physics
    Notes: Abstract. Family and twin studies have demonstrated a strong genetic component to the development of peak bone mass. Early fetal and infant environment has also been shown to influence bone mass through an effect on skeletal size and mineral content. We report a retrospective study that has examined whether early infant growth is regulated by genetic factors shown to be associated with bone mass. We have determined the vitamin D receptor (VDR) gene alleles for 66 women (mean age 65.5 years) on whom detailed birth records were available. There was a statistically significant trend (P= 0.04) for VDR genotype against weight at the age of 1 year, with the ``tt'' homozygote group having 7% higher weight. We conclude that early fetal or infant environment may interact with an individual's underlying genotype to program early skeletal growth, and that this may track through later life to influence adult characteristics. Further prospective studies are required, however, to fully clarify the precise environmental and genetic mechanisms underlying these findings.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: IL-3-dependent FDC-P1 cells ; histone H4 gene ; cell cycle control ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: To evaluate transcriptional mechanisms during cytokine induction of myeloid progenitor cell proliferation, we examined the expression and activity of transcription factors that control cell cycle-dependent histone genes in interleukin-3 (IL-3)-dependent FDC-P1 cells. Histone genes are transcriptionally upregulated in response to a series of cellular regulatory signals that mediate competency for cell cycle progression at the G1/S-phase transition. We therefore focused on factors that are functionally related to activity of the principal cell cycle progression at the G1/S-phase transition. We therefore focused on factors that are functionally related to activity of the principal cell cycle regulatory element of the histone H4 promoter:CDC2, cyclin A, as well as RB-and IRF-related proteins. Comparisons were made with activities of ubiquitous transcription factors that influence a broad spectrum of promoters independent of proliferation or expression of tissue-specific phenotypic properties. Northern blot analysis indicates that cellular levels of cyclin A and CDC2 mRNAs increase when DNA synthesis and H4 gene expression are initiated, supporting invoulvement in cell cycle progression. Using gel-shift assays, incorporating factor-specific antibody and oligonucleotide competition controls, we define three sequential periods following cytokine stimulation of FDC-P1 cells when selective upregulation of a subset of transcription factors is observed. In the initial period, the levels of SP1 and HiNF-P are moderately elevated; ATF, AP-1, and HiNF-M/IRF-2 are maximal during the second period; while E2F and HiNF-D, which contain cyclin A as a component, predominate during the third period, coinciding with maximal H4 gene expression and DNA synthesis. Differential regulation of H4 gene transcription factors following growth stimulation is consistent with a principal role of histone gene promoter elements in integrating cues from multiple signaling pathways that control cell cycle induction and progression. Regulation of transcription factors controlling histone gene promoter activity within the context of a staged cascade of responsiveness to cyclins and other physiological mediators of proliferation in FDC-P1 cells provides a paradigm for experimentally addressing interdependent cell cycle and cell growth parameters that are operative in hematopoietic stem cells. © 1995 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...