ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Juan de Fuca
Collection
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 12 (2011): Q06007, doi:10.1029/2010GC003424.
    Description: The Integrated Ocean Drilling Program (IODP) Hole 1301A on the eastern flank of Juan de Fuca Ridge was used in the first long-term deployment of microbial enrichment flow cells using osmotically driven pumps in a subseafloor borehole. Three novel osmotically driven colonization systems with unidirectional flow were deployed in the borehole and incubated for 4 years to determine the microbial colonization preferences for 12 minerals and glasses present in igneous rocks. Following recovery of the colonization systems, we measured cell density on the minerals and glasses by fluorescent staining and direct counting and found some significant differences between mineral samples. We also determined the abundance of mesophilic and thermophilic culturable organotrophs grown on marine R2A medium and identified isolates by partial 16S or 18S rDNA sequencing. We found that nine distinct phylotypes of culturable mesophilic oligotrophs were present on the minerals and glasses and that eight of the nine can reduce nitrate and oxidize iron. Fe(II)-rich olivine minerals had the highest density of total countable cells and culturable organotrophic mesophiles, as well as the only culturable organotrophic thermophiles. These results suggest that olivine (a common igneous mineral) in seawater-recharged ocean crust is capable of supporting microbial communities, that iron oxidation and nitrate reduction may be important physiological characteristics of ocean crust microbes, and that heterogeneously distributed minerals in marine igneous rocks likely influence the distribution of microbial communities in the ocean crust.
    Description: The subseafloor flow cell enrichment chambers were funded by a small grant from the Ocean Drilling Program. This work was also funded by NASA grant NNX08AO22G, NSF OCE 0727119 to C.G.W., NSF OCE 0452333 to S.M.S., and OCE‐0550713 and OCE‐0727952 to A.T.F., PSU, and OSU.
    Keywords: Juan de Fuca ; Basalt ; Iron oxidizers ; Nitrate reducers ; Olivine ; Subseafloor
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...