ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Alkaline phosphatase  (1)
  • Jelly-C  (1)
Collection
Keywords
Publisher
Language
Years
  • 1
    Publication Date: 2021-10-28
    Description: Gelatinous zooplankton (Cnidaria, Ctenophora, and Urochordata, namely, Thaliacea) are ubiquitous members of plankton communities linking primary production to higher trophic levels and the deep ocean by serving as food and transferring “jelly-carbon” (jelly-C) upon bloom collapse. Global biomass within the upper 200 m reaches 0.038 Pg C, which, with a 2–12 months life span, serves as the lower limit for annual jelly-C production. Using over 90,000 data points from 1934 to 2011 from the Jellyfish Database Initiative as an indication of global biomass (JeDI: http://jedi.nceas.ucsb.edu, http://www.bco-dmo.org/dataset/526852), upper ocean jelly-C biomass and production estimates, organism vertical migration, jelly-C sinking rates, and water column temperature profiles from GLODAPv2, we quantitatively estimate jelly-C transfer efficiency based on Longhurst Provinces. From the upper 200 m production estimate of 0.038 Pg C year−1, 59–72% reaches 500 m, 46–54% reaches 1,000 m, 43–48% reaches 2,000 m, 32–40% reaches 3,000 m, and 25–33% reaches 4,500 m. This translates into ~0.03, 0.02, 0.01, and 0.01 Pg C year−1, transferred down to 500, 1,000, 2,000, and 4,500 m, respectively. Jelly-C fluxes and transfer efficiencies can occasionally exceed phytodetrital-based sediment trap estimates in localized open ocean and continental shelves areas under large gelatinous blooms or jelly-C mass deposition events, but this remains ephemeral and transient in nature. This transfer of fast and permanently exported carbon reaching the ocean interior via jelly-C constitutes an important component of the global biological soft-tissue pump, and should be addressed in ocean biogeochemical models, in particular, at the local and regional scale.
    Keywords: 577.1 ; Jelly-C ; carbon ; gelatinous ; zooplankton ; modeling ; transfer efficiency
    Language: English
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Microbiology 4 (2013): 155, doi:10.3389/fmicb.2013.00155.
    Description: Growth and calcification of the marine coccolithophorid Emiliania huxleyi is affected by ocean acidification and macronutrients limitation and its response varies between strains. Here we investigated the physiological performance of a highly calcified E. huxleyi strain, NZEH, in a multiparametric experiment. Cells were exposed to different CO2 levels (ranging from 250 to 1314 μatm) under three nutrient conditions [nutrient replete (R), nitrate limited (-N), and phosphate limited (-P)]. We focused on calcite and organic carbon quotas and on nitrate and phosphate utilization by analyzing the activity of nitrate reductase (NRase) and alkaline phosphatase (APase), respectively. Particulate inorganic (PIC) and organic (POC) carbon quotas increased with increasing CO2 under R conditions but a different pattern was observed under nutrient limitation. The PIC:POC ratio decreased with increasing CO2 in nutrient limited cultures. Coccolith length increased with CO2 under all nutrient conditions but the coccosphere volume varied depending on the nutrient treatment. Maximum APase activity was found at 561 μatm of CO2 (pH 7.92) in -P cultures and in R conditions, NRase activity increased linearly with CO2. These results suggest that E. huxleyi's competitive ability for nutrient uptake might be altered in future high-CO2 oceans. The combined dataset will be useful in model parameterizations of the carbon cycle and ocean acidification.
    Description: This research was supported by the “European Project on Ocean Acidification” (EPOCA) which received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 211384. This work was also funded in part by The European Research Council (ERC grant 2010-ADG-267931 to Harry Elderfield) and the Spanish Ministry of Science and Innovation (grant CTM2008-05680-C02-01).
    Keywords: Emiliania huxleyi ; Ocean acidification ; Nutrients ; Alkaline phosphatase ; Nitrate reductase ; Calcification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...