ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Ionosphere (auroral ionosphere, electric fields and currents, ionosphere-magnetosphere interactions)  (1)
  • METEOROLOGY AND CLIMATOLOGY  (1)
Sammlung
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Digitale Medien
    Digitale Medien
    Springer
    Annales geophysicae 18 (2000), S. 1128-1144 
    ISSN: 0992-7689
    Schlagwort(e): Ionosphere (auroral ionosphere, electric fields and currents, ionosphere-magnetosphere interactions)
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie , Physik
    Notizen: Abstract The optical detection of auroral subarcs a few tens of m wide as well as the direct observation of shears several m/s per m over km to sub km scales by rocket instrumentation both indicate that violent and highly localized electrodynamics can occur at times in the auroral ionosphere over scales 100 m or less in width. These observations as well as the detection of unstable ion-acoustic waves observed by incoherent radars along the geomagnetic field lines has motivated us to develop a detailed time-dependent two-dimensional model of short-scale auroral electrodynamics that uses current continuity, Ohm’s law, and 8-moment transport equations for the ions and electrons in the presence of large ambient electric fields to describe wide auroral arcs with sharp edges in response to sharp cut-offs in precipitation (even though it may be possible to describe thin arcs and ultra-thin arcs with our model, we have left such a study for future work). We present the essential elements of this new model and illustrate the model’s usefulness with a sample run for which the ambient electric field is 100 mV/m away from the arc and for which electron precipitation cuts off over a region 100 m wide. The sample run demonstrates that parallel current densities of the order of several hundred μA m-2 can be triggered in these circumstances, together with shears several m/s per m in magnitude and parallel electric fields of the order of 0.1 mV/m around 130 km altitude. It also illustrates that the local ionospheric properties like densities, temperature and composition can strongly be affected by the violent localized electrodynamics and vice-versa.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2011-08-24
    Beschreibung: Ample evidence supports the significance of the high-latitude ionospheric contribution to magnetospheric plasma. Assuming flux conservation along a flux tube, the upward field-aligned ion flows observed in the magnetosphere require high-latitude ionospheric field-aligned ion upflows of the order of 10(exp 8) to 10(exp 9)/sq cm/s. Since radar and satellite observations of high-latitude F region flows at times exceed this flux requirement by an order of magnitude, the thermal ionospheric upflows are not simply the ionospheric response to a magnetospheric flux requirement. Several ionospheric ion upflow mechanisms have been proposed, but simulations based on fluid theory do not reproduce all the observed features of ionospheric ion upflows. Certain asymmetries in the statistical morphology of high-latitude F region ion upflows suggest that the ion upflows may be generated by ion-neutral frictional heating. We developed a single-component (O(+)), time-dependent gyro-kinetic model of the high-latitude F region response to frictional heating in which the neutral exobase is a discontinuous boundary between fully collisional and collisionless plasmas. The concept of a discontinuous neutreal exobase and the assumption of a constant and uniform polarization electric field reduce the ion velocity distribution function, from which we can compute the ion density, parallel velocity, parallel and perpendicular temperature, and parallel flux. Using our model, we simulated the response of a convecting flux tube between 500 km and 2500 km to various frictional heating inputs; the results were both qualitatively and quantitatively different from fluid model results, which may indicate an inadequacy of the fluid theory approach. The gyro-kinetic frictional heating model responses to the various simulations were qualitatively similar: (1) initial perturbations of all the modeled parameters propagated rapidly up the flux tube, (2) transient values of the ion parallel velocity, temperature, and flux exceeded 3 km/s, 2 x 10(exp 4) K, and 10(exp 9)/sq cm/s, respectively, (3) a second transient regime developed wherein the parallel temperature drops to very low values (a few hundred Kelvins), and (4) well after heating ceased, large parallel temperatures and large downward parallel velocities and fluxes developed as the flux tube slowly returned to diffusive equilibrium. The ion velocity distributions during the simulation are often non-Maxwellian and are sometimes composed of two distinct ion populations.
    Schlagwort(e): METEOROLOGY AND CLIMATOLOGY
    Materialart: Journal of Geophysical Research (ISSN 0148-0227); 99; A9; p. 17,429-17,451
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...