ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-10-29
    Description: Circadian oscillation of body temperature is a basic, evolutionarily conserved feature of mammalian biology. In addition, homeostatic pathways allow organisms to protect their core temperatures in response to cold exposure. However, the mechanism responsible for coordinating daily body temperature rhythm and adaptability to environmental challenges is unknown. Here we show that the nuclear receptor Rev-erbalpha (also known as Nr1d1), a powerful transcriptional repressor, links circadian and thermogenic networks through the regulation of brown adipose tissue (BAT) function. Mice exposed to cold fare considerably better at 05:00 (Zeitgeber time 22) when Rev-erbalpha is barely expressed than at 17:00 (Zeitgeber time 10) when Rev-erbalpha is abundant. Deletion of Rev-erbalpha markedly improves cold tolerance at 17:00, indicating that overcoming Rev-erbalpha-dependent repression is a fundamental feature of the thermogenic response to cold. Physiological induction of uncoupling protein 1 (Ucp1) by cold temperatures is preceded by rapid downregulation of Rev-erbalpha in BAT. Rev-erbalpha represses Ucp1 in a brown-adipose-cell-autonomous manner and BAT Ucp1 levels are high in Rev-erbalpha-null mice, even at thermoneutrality. Genetic loss of Rev-erbalpha also abolishes normal rhythms of body temperature and BAT activity. Thus, Rev-erbalpha acts as a thermogenic focal point required for establishing and maintaining body temperature rhythm in a manner that is adaptable to environmental demands.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839416/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3839416/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gerhart-Hines, Zachary -- Feng, Dan -- Emmett, Matthew J -- Everett, Logan J -- Loro, Emanuele -- Briggs, Erika R -- Bugge, Anne -- Hou, Catherine -- Ferrara, Christine -- Seale, Patrick -- Pryma, Daniel A -- Khurana, Tejvir S -- Lazar, Mitchell A -- F-32 DK095563/DK/NIDDK NIH HHS/ -- F32 DK095526/DK/NIDDK NIH HHS/ -- P30 DK019525/DK/NIDDK NIH HHS/ -- P30 DK19525/DK/NIDDK NIH HHS/ -- R01 DK045586/DK/NIDDK NIH HHS/ -- R01 DK45586/DK/NIDDK NIH HHS/ -- U19 DK062434/DK/NIDDK NIH HHS/ -- England -- Nature. 2013 Nov 21;503(7476):410-3. doi: 10.1038/nature12642. Epub 2013 Oct 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA [2] The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24162845" target="_blank"〉PubMed〈/a〉
    Keywords: Acclimatization/genetics/physiology ; Adipose Tissue, Brown/metabolism ; Animals ; Body Temperature Regulation/genetics/*physiology ; Circadian Rhythm/genetics/*physiology ; Cold Temperature ; Down-Regulation ; Ion Channels/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mitochondrial Proteins/metabolism ; Nuclear Receptor Subfamily 1, Group D, Member 1/deficiency/genetics/*metabolism ; Thermogenesis/genetics/physiology ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-24
    Description: Obesity is an increasingly prevalent disease regulated by genetic and environmental factors. Emerging studies indicate that immune cells, including monocytes, granulocytes and lymphocytes, regulate metabolic homeostasis and are dysregulated in obesity. Group 2 innate lymphoid cells (ILC2s) can regulate adaptive immunity and eosinophil and alternatively activated macrophage responses, and were recently identified in murine white adipose tissue (WAT) where they may act to limit the development of obesity. However, ILC2s have not been identified in human adipose tissue, and the mechanisms by which ILC2s regulate metabolic homeostasis remain unknown. Here we identify ILC2s in human WAT and demonstrate that decreased ILC2 responses in WAT are a conserved characteristic of obesity in humans and mice. Interleukin (IL)-33 was found to be critical for the maintenance of ILC2s in WAT and in limiting adiposity in mice by increasing caloric expenditure. This was associated with recruitment of uncoupling protein 1 (UCP1)(+) beige adipocytes in WAT, a process known as beiging or browning that regulates caloric expenditure. IL-33-induced beiging was dependent on ILC2s, and IL-33 treatment or transfer of IL-33-elicited ILC2s was sufficient to drive beiging independently of the adaptive immune system, eosinophils or IL-4 receptor signalling. We found that ILC2s produce methionine-enkephalin peptides that can act directly on adipocytes to upregulate Ucp1 expression in vitro and that promote beiging in vivo. Collectively, these studies indicate that, in addition to responding to infection or tissue damage, ILC2s can regulate adipose function and metabolic homeostasis in part via production of enkephalin peptides that elicit beiging.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447235/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447235/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brestoff, Jonathan R -- Kim, Brian S -- Saenz, Steven A -- Stine, Rachel R -- Monticelli, Laurel A -- Sonnenberg, Gregory F -- Thome, Joseph J -- Farber, Donna L -- Lutfy, Kabirullah -- Seale, Patrick -- Artis, David -- 2-P30 CA016520/CA/NCI NIH HHS/ -- AI061570/AI/NIAID NIH HHS/ -- AI074878/AI/NIAID NIH HHS/ -- AI095466/AI/NIAID NIH HHS/ -- AI095608/AI/NIAID NIH HHS/ -- AI097333/AI/NIAID NIH HHS/ -- AI102942/AI/NIAID NIH HHS/ -- DP2 OD007288/OD/NIH HHS/ -- DP2OD007288/OD/NIH HHS/ -- DP5 OD012116/OD/NIH HHS/ -- DP5OD012116/OD/NIH HHS/ -- F30 AI112023/AI/NIAID NIH HHS/ -- F30-AI112023/AI/NIAID NIH HHS/ -- F31 AG047003/AG/NIA NIH HHS/ -- F31AG047003/AG/NIA NIH HHS/ -- K08 AR065577/AR/NIAMS NIH HHS/ -- KL2-RR024132/RR/NCRR NIH HHS/ -- P01 AI106697/AI/NIAID NIH HHS/ -- P01AI06697/AI/NIAID NIH HHS/ -- P30 AR057217/AR/NIAMS NIH HHS/ -- P30 DK019525/DK/NIDDK NIH HHS/ -- P30-DK050306/DK/NIDDK NIH HHS/ -- P30DK19525/DK/NIDDK NIH HHS/ -- R01 AI061570/AI/NIAID NIH HHS/ -- R01 AI074878/AI/NIAID NIH HHS/ -- R01 AI095466/AI/NIAID NIH HHS/ -- R01 AI097333/AI/NIAID NIH HHS/ -- R01 AI102942/AI/NIAID NIH HHS/ -- T32 AI060516/AI/NIAID NIH HHS/ -- T32-AI007532/AI/NIAID NIH HHS/ -- T32-AI060516/AI/NIAID NIH HHS/ -- U01 AI095608/AI/NIAID NIH HHS/ -- England -- Nature. 2015 Mar 12;519(7542):242-6. doi: 10.1038/nature14115. Epub 2014 Dec 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Jill Roberts Institute for Research in IBD, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York 10021, USA [2] Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Institute for Diabetes, Obesity and Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA. ; Jill Roberts Institute for Research in IBD, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York 10021, USA. ; 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York 10032, USA [2] Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, USA. ; 1] Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York 10032, USA [2] Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, USA [3] Department of Surgery, Columbia University Medical Center, New York, New York 10032, USA. ; Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25533952" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/cytology/drug effects ; Adipose Tissue, White/*cytology/*immunology ; Animals ; Energy Metabolism/immunology ; Enkephalin, Methionine/biosynthesis/metabolism ; Eosinophils/immunology/metabolism ; Female ; Homeostasis/drug effects ; Humans ; Immunity, Innate/*immunology ; Interleukins/immunology/pharmacology ; Ion Channels/metabolism ; Lymphocytes/cytology/immunology/*physiology ; Male ; Mice ; Mitochondrial Proteins/metabolism ; Obesity/*immunology/pathology ; Receptors, Interleukin-4/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...