ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Inverse method  (4)
  • Ocean models  (3)
  • Mixing  (2)
Collection
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 2910-2925, doi:10.1175/2009JPO4139.1.
    Description: The propagation of Rossby waves on a midlatitude β plane is investigated in the presence of density diffusion with the aid of linear hydrostatic theory. The search for wave solutions in a vertically bounded medium subject to horizontal (vertical) diffusion leads to an eigenvalue problem of second (fourth) order. Exact solutions of the problem are obtained for uniform background stratification (N), and approximate solutions are constructed for variable N using the Wentzel–Kramers–Brillouin method. Roots of the eigenvalue relations for free waves are found and discussed. The barotropic wave of adiabatic theory is also a solution of the eigenvalue problem as this is augmented with density diffusion in the horizontal or vertical direction. The barotropic wave is undamped as fluid parcels in the wave move only horizontally and are therefore insensitive to the vortex stretching induced by mixing. On the other hand, density diffusion modifies the properties of baroclinic waves of adiabatic theory. In the presence of horizontal diffusion the baroclinic modes are damped but their vertical structure remains unaltered. The ability of horizontal diffusion to damp baroclinic waves stems from its tendency to counteract the deformation of isopycnal surfaces caused by the passage of these waves. The damping rate increases (i) linearly with horizontal diffusivity and (ii) nonlinearly with horizontal wavenumber and mode number. In the presence of vertical diffusion the baroclinic waves suffer both damping and a change in vertical structure. In the long-wave limit the damping is critical (wave decay rate numerically equal to wave frequency) and increases as the square roots of vertical diffusivity and zonal wavenumber. Density diffusion in the horizontal or vertical direction reduces the amplitude of the phase speed of westward-propagating waves. Observational estimates of eddy diffusivities suggest that horizontal and vertical mixing strongly attenuates baroclinic waves in the ocean but that vertical mixing is too weak to notably modify the vertical structure of the gravest modes.
    Description: This work was supported by the U.S. National Science Foundation.
    Keywords: Rossby waves ; Extratropics ; Buoyancy ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 394-407, doi:10.1175/jpo3018.1.
    Description: The ability of paleoceanographic tracers to constrain rates of transport is examined using an inverse method to combine idealized observations with a geostrophic model. Considered are the spatial distribution, accuracy, and types of tracers required to constrain changes in meridional transport within an idealized single-hemisphere basin. Measurements of density and radioactive tracers each act to constrain rates of transport. Conservative tracers, while not of themselves able to inform regarding rates of transport, improve constraints when coupled with density or radioactive observations. It is found that the tracer data would require an accuracy one order of magnitude better than is presently available for paleo-observations to conclusively rule out factor-of-2 changes in meridional transport, even when assumed available over the entire model domain. When data are available only at the margins and bottom of the model, radiocarbon is unable to constrain transport while density remains effective only when a reference velocity level is assumed. The difficulty in constraining the circulation in this idealized model indicates that placing firm bounds on past meridional transport rates will prove challenging.
    Description: The first author is supported by the NOAA Postdoctoral Program in Climate and Global Change and GG by the National Ocean Partnership Program (ECCO). Author OM acknowledges support from the National Science Foundation.
    Keywords: Tracers ; Transport ; Paleoclimatology ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 125 (2017): 106-128, doi:10.1016/j.dsr.2017.05.003.
    Description: The high particle reactivity of thorium has resulted in its widespread use in tracing processes impacting marine particles and their chemical constituents. The use of thorium isotopes as tracers of particle dynamics, however, largely relies on our understanding of how the element scavenges onto particles. Here, we estimate apparent rate constants of Th adsorption (k1), Th desorption (k−1), bulk particle degradation (β-1), and bulk particle sinking speed (w) along the water column at 11 open-ocean stations occupied during the GEOTRACES North Atlantic Section (GA03). First, we provide evidence that the budgets of Th isotopes and particles at these stations appear to be generally dominated by radioactive production and decay sorption reactions, particle degradation, and particle sinking. Rate parameters are then estimated by fitting a Th and particle cycling model to data of dissolved and particulate 228,230,234Th, 228Ra, particle concentrations, and 234,238U estimates based on salinity, using a nonlinear programming technique. We find that the adsorption rate constant (k1) generally decreases with depth across the section: broadly, the time scale 1/k1 averages 1.0 yr in the upper 1000 m and (1.4–1.5) yr below. A positive relationship between k1 and particle concentration (P) is found, i.e., , k1 ∝ Pb where b ≥ 1, consistent with the notion that k1 increases with the number of surface sites available for adsorption. The rate constant ratio, K = k1/(k-1 + β-1), which measures the collective influence of rate parameters on Th scavenging, averages 0.2 for most stations and most depths. We clarify the conditions under which K/P is equivalent to the distribution coefficient, KD, test that the conditions are met at the stations, and find that decreases with P, in line with a particle concentration effect (dKD/dP 〈 0). In contrast to the influence of colloids as envisioned by the Brownian pumping hypothesis, we provide evidence that the particle concentration effect arises from the joint effect of P on the rate constants for thorium attachment to, and detachment from, particles.
    Description: We acknowledge the U.S. National Science Foundation for providing funding for this study (grant OCE-1232578) and for U.S. GEOTRACES North Atlantic section ship time, sampling, and data analysis. The U.S. NSF also supported the generation of 230Th data (OCE-0927064 to LDEO, OCE-O092860 to WHOI, and OCE-0927754 to UMN) and 228,234Th data (OCE-0925158 to WHOI).
    Keywords: GEOTRACES ; Thorium ; Particle Concentration Effect ; Single-particle class model ; Inverse method
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 54 (2007): 557-585, doi:10.1016/j.dsr.2007.01.002.
    Description: An inverse finite-difference model of the abyssal circulation in the North Atlantic Ocean is developed in order to evaluate the dynamical information contained in measurements of thorium-230 (230Th). The model has a very coarse resolution and is based on lowest order balances for planetary flows. The naturally occurring 230Th differs from more conventional oceanic tracers in several respects, e.g., its production (by 234U radioactive decay) is globally uniform to a good approximation and its removal can be understood in terms of a simple reversible exchange with particles sinking slowly to the seafloor. The time required for 230Th to reach steady state with respect to particle exchange is estimated to increase with depth, reaching O(10) yr below 1000 m. In the North Atlantic 230Th activities at distant locations share a similar increase with depth in the upper 1000m—a pattern consistent with a reversible exchange—but show drastic differences in the abyssal interior. Two inversions are conducted in order to determine whether the 230Th differences reflect the effects of the circulation—by preventing the slow attainment to steady state w.r.t. particle exchange in deep water—and provide complementary information about the abyssal flow. In a first inversion, observations of density from a hydrographic compilation and of volume transports at specific locations are combined with the dynamical balances in order to infer the basin-scale flow. The inferred flow displays the western boundary current and coherent structures in the abyssal interior with low statistical significance. In a second inversion, the flow is further constrained by the 230Th measurements and the condition that 230Th divergence by the flow field and particle sinking must be locally balanced by 230Th production from 234U decay. The addition of 230Th leads to the estimation of a larger amplitude of the integrated meridional transports below 1000 m (by 2–9 Sv), where the range reflects the uncertainties in the large scale 230Th distribution and in the radiochemical balance. This result is interpreted as a correction by 230Th for the tendency of inverse geostrophic models to lead to the inference of a vanishing circulation when horizontal density gradients are insignificant.
    Description: OM acknowledges the support from the Ocean and Climate Change Institute at WHOI and from the US National Science Foundation. The IAEA (JS) is grateful for the support provided to its Marine Environment Laboratory by the Government of the Principality of Monaco. JS is grateful to Jan Fietzke for ICPMS measurements and for support from the ‘Deutsche Forschungsgemeinschaft’ (grant no. SCHO752/ 2-1).
    Keywords: Thorium-230 ; Abyssal circulation ; North Atlantic ; Inverse method
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 23 (2010): 4841–4855, doi:10.1175/2010JCLI3273.1.
    Description: A 1-Myr-long time-dependent solution of a zonally averaged ocean–atmosphere model subject to Milankovitch forcing is examined to gain insight into long-term changes in the planetary-scale meridional moisture flux in the atmosphere. The model components are a one-dimensional (latitudinal) atmospheric energy balance model with an active hydrological cycle and an ocean circulation model representing four basins (Atlantic, Indian, Pacific, and Southern Oceans). This study finds that the inclusion of an active hydrological cycle does not significantly modify the responses of annual-mean air and ocean temperatures to Milankovitch forcing found in previous integrations with a fixed hydrological cycle. Likewise, the meridional overturning circulation of the North Atlantic Ocean is not significantly affected by hydrological changes. Rather, it mainly responds to precessionally driven variations of ocean temperature in subsurface layers (between 70- and 500-m depth) of this basin. On the other hand, annual and zonal means of evaporation rate and meridional flux of moisture in the atmosphere respond notably to obliquity-driven changes in the meridional gradient of annual-mean insolation. Thus, when obliquity is decreased (increased), the meridional moisture flux in the atmosphere is intensified (weakened). This hydrological response is consistent with deuterium excess records from polar ice cores, which are characterized by dominant obliquity cycles.
    Description: A. A. thanks the Global Environmental and Climate Change Centre of McGill University for a Network Grant that made possible an enriching twoweek stay at WHOI during June 2007. O. M. acknowledges support from theU.S.National Science Foundation. Support from a Canadian NSERC Discovery Grant awarded to L.A.M. is gratefully acknowledged.
    Keywords: Forcing ; Moisture ; Fluxes ; Ocean models ; Coupled models ; Southern Ocean ; Pacific Ocean ; Atlantic Ocean ; Indian Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography and Paleoclimatology 33 (2018): 128-151, doi:10.1002/2017PA003174.
    Description: We present a synthesis of 1,361 deep‐sea radiocarbon data spanning the past 40 kyr and computed (for 14C‐dated records) from the same calibration to atmospheric 14C. The most notable feature in our compilation is a long‐term Δ14C decline in deep oceanic basins over the past 25 kyr. The Δ14C decline mirrors the drop in reconstructed atmospheric Δ14C, suggesting that it may reflect a decrease in global 14C inventory rather than a redistribution of 14C among different reservoirs. Motivated by this observation, we explore the extent to which the deep water Δ14C data jointly require changes in basin‐scale ventilation during the last deglaciation, based on the fit of a 16‐box model of modern ocean ventilation to the deep water Δ14C records. We find that the fit residuals can largely be explained by data uncertainties and that the surface water Δ14C values producing the fit are within the bounds provided by contemporaneous values of atmospheric and deep water Δ14C. On the other hand, some of the surface Δ14C values in the northern North Atlantic and the Southern Ocean deviate from the values expected from atmospheric 14CO2 and CO2 concentrations during the Heinrich Stadial 1 and the Bølling‐Allerød. The possibility that deep water Δ14C records reflect some combination of changes in deep circulation and surface water reservoir ages cannot be ruled out and will need to be investigated with a more complete model.
    Description: U.S. National Science Foundation Grant Number: OCE‐1301907
    Description: 2018-07-08
    Keywords: Last deglaciation ; Ocean ventilation ; Data synthesis ; Radiocarbon ; Inverse method
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 8059-8079, doi:10.1175/JCLI-D-17-0769.1.
    Description: We use the method of least squares with Lagrange multipliers to fit an ocean general circulation model to the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) estimate of near sea surface temperature (NSST) at the Last Glacial Maximum (LGM; circa 23–19 thousand years ago). Compared to a modern simulation, the resulting global, last-glacial ocean state estimate, which fits the MARGO data within uncertainties in a free-running coupled ocean–sea ice simulation, has global-mean NSSTs that are 2°C lower and greater sea ice extent in all seasons in both the Northern and Southern Hemispheres. Increased brine rejection by sea ice formation in the Southern Ocean contributes to a stronger abyssal stratification set principally by salinity, qualitatively consistent with pore fluid measurements. The upper cell of the glacial Atlantic overturning circulation is deeper and stronger. Dye release experiments show similar distributions of Southern Ocean source waters in the glacial and modern western Atlantic, suggesting that LGM NSST data do not require a major reorganization of abyssal water masses. Outstanding challenges in reconstructing LGM ocean conditions include reducing effects from model biases and finding computationally efficient ways to incorporate abyssal tracers in global circulation inversions. Progress will be aided by the development of coupled ocean–atmosphere–ice inverse models, by improving high-latitude model processes that connect the upper and abyssal oceans, and by the collection of additional paleoclimate observations.
    Description: DEA was supported by a NSF Graduate Research Fellowship and NSF Grant OCE-1060735. OM acknowledges support from the NSF. GF was supported by NASA Award 1553749 and Simons Foundation Award 549931.
    Keywords: Ocean ; Abyssal circulation ; Sea surface temperature ; Paleoclimate ; Inverse methods ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 25 (2010): PA4222, doi:10.1029/2010PA001936.
    Description: Observations and an ocean box model are combined in order to test the adequacy of the freshwater forcing hypothesis to explain abrupt climate change given the uncertainties in the parameterization of vertical buoyancy transport in the ocean. The combination is carried out using Bayesian stochastic inversion, which allows us to infer changes in the mass balance of Northern Hemisphere (NH) ice sheets and in the meridional transports of mass and heat in the Atlantic Ocean that would be required to explain Dansgaard-Oeschger Interstadials (DOIs) from 30 to 39 kyr B.P. The mean sea level changes implied by changes in NH ice sheet mass balance agree in amplitude and timing with reconstructions from the geologic record, which gives some support to the freshwater forcing hypothesis. The inversion suggests that the duration of the DOIs should be directly related to the growth of land ice. Our results are unaffected by uncertainties in the representation of vertical buoyancy transport in the ocean. However, the solutions are sensitive to assumptions about physical processes at polar latitudes.
    Description: This material is based upon work supported by the National Science Foundation under grant OCE‐0402363 and Department of Energy grant DE‐FG02‐08ER64619.
    Keywords: Inversion ; MOC ; Abrupt ; Sea level ; Coral ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 26 (2011): PA1212, doi:10.1029/2010PA002022.
    Description: Records of 231Pa/230Th from Atlantic sediments have been interpreted to reflect changes in ocean circulation during the geologic past. Such interpretations should be tested with due regard to the limited spatial coverage of 231Pa/230Th data and the uncertainties in our current understanding of the behavior of both nuclides in the ocean. Here an inverse method is used to evaluate the information contained in 231Pa/230Th compilations for the Holocene, Last Glacial Maximum (LGM), and Heinrich Event 1 (H1). An estimate of the abyssal circulation in the modern Atlantic Ocean is obtained by combining hydrographic observations and dynamical constraints. Then sediment 231Pa/230Th data for each time interval are combined with an advection-scavenging model in order to determine their (in)consistency with the modern circulation estimate. We find that the majority of sediment 231Pa/230Th data for the Holocene, LGM, or H1 can be brought into consistency with the modern circulation if plausible assumptions are made about the large-scale distribution of 231Pa and about model uncertainties. Moreover, the adjustments in the data needed to reach compatibility with a hypothetical state of no flow (no advection) are positively biased for each time interval, suggesting that the 231Pa/230Th data (including that for H1) are more consistent with a persistence of some circulation than with no circulation. Our study does not imply that earlier claims of a circulation change during the LGM or H1 are inaccurate, but that these claims cannot be given a rigorous basis given the current uncertainties involved in the analysis of the 231Pa/230Th data.
    Description: O.M. acknowledges the support from the U.S. National Science Foundation. J.F.M. acknowledges support from the U.S. National Science Foundation and the Comer Research and Education Foundation.
    Keywords: Pa-231/Th-230 ; Meridional overturning circulation ; Inverse method ; Heinrich Event
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...