ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Physics  (47)
  • Instrumentation and Photography  (30)
  • Geophysics  (13)
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 673-679 
    ISSN: 0887-6266
    Keywords: scanning force microscopy ; hectorite ; polystyrene ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Many important layered silicate-polymer nanocomposite materials may be synthesized using an in-situ polymerization process. Using this technique, organic monomers are intercalated into the interlayer regions of the hosts, where subsequent polymerization may then occur. In this paper, we report on the in-situ polymerization of styrene in Cu(II)-exchanged hectorite thin films. Scanning force microscopy (SFM) images of the polymer surface reveal that the surface polystyrene is generally aggregated into groups of elongated strands. SFM imaging of the interclay regions, in conjunction with X-ray diffraction (XRD) and electron spin resonance (ESR) data, indicates that approximately 20-30% of these regions contain polystyrene, with minimal reduction in the majority of Cu2+ sites observed. XRD data shows little or no intercalation of the monomer into the true intergallery regions. Instead, the polymer likely forms in intercrystallite or planar defect regions. In addition, two distinct phases of polymeric material are found within these defect regions, a highly polymerized polystyrene in addition to a polystyrene form exhibiting greater material stiffness. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 673-679, 1998
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 36 (1998), S. 2551-2562 
    ISSN: 0887-6266
    Keywords: polytetrafluoroethylene ; virgin powder ; two-stage draw ; morphology ; tensile properties ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Polytetrafluoroethylene (PTFE) virgin powder was ultradrawn uniaxially by a two-stage draw. A film, compression molded from powder below the melting temperature (Tm), was initially solid-state coextruded to an extrudate draw ratio (EDR) of 6-20 at an established optimum extrusion temperature of 325°C, near the Tm of 335°C. These extrudates from first draw were found to exhibit the highest ductility at 45-100°C for the second-stage tensile draw, depending on the initial EDR and draw rate. The maximum achievable total draw ratio (DRt, max) was 36-48. Such high ductility of PTFE, far below the Tg (125°C) and Tm, is in sharp contrast to other crystalline polymers that generally exhibit the highest ductility above their Tg and near Tm. The unusual draw characteristics of PTFE was ascribed to the existence of the reversible crystal/crystal transitions around room temperature and the low intermolecular force of this polymer, which leads to a rapid decrease in tensile strength with temperature. The structure and tensile properties of drawn products were sensitive to the initial EDR, although this had no significant influence on DRt,max. The most efficient and highest draw was achieved by the second-stage tensile draw of an extrudate with the highest EDR 20 at 100°C, as evaluated by the morphological and tensile properties as a function of DRt. The efficiency of draw for the cold tensile draw at 100°C was a little lower than that for solid-state coextrusion near the Tm. However, significantly higher tensile modulus and strength along the fiber axis at 24°C of 60 ± 2 GPa and 380 ± 20 MPa, respectively, were achieved by the two-stage draw, because the DRt,max was remarkably higher for this technique than for solid-state coextrusion (DRt,max = 48 vs. 25). The increase in the crystallite size along the fiber axis (D0015), determined by X-ray diffraction, is found to be a useful measure for the development of the morphological continuity along the fiber axis of drawn products.© 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2551-2562, 1998
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 14 (1976), S. 553-564 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Solutions of polystyrene in p-xylene were frozen in liquid nitrogen. No changes in molecular weight and distribution were caused by freezing solutions for a series of narrow distribution polystyrenes with molecular weights of near 2 × 106 and lower. Likewise a commercial polystyrene of M̄w = 234,000 showed no change, even after 45 cycles of freezing and thawing. However, an ultrahigh molecular weight polystyrene (M̄w = 7.3 × 106) showed appreciable degradation even after a few freezing cycles of its solutions. The changes in molecular weight and distribution were analyzed by gel-permeation chromatography. The results depended very much on the choice of solvent, cooling rate, and concentration. The extent of degradation was found to depend on polymer concentration in two distinct ways. Indeed, two different degradation mechanisms have been distinguished at low and at high concentrations. The change between mechanisms took place between 1.0 and 2.5 g/l. for polystyrene in p-xylene. This appears to provide a rare measure of polymer-polymer interactions (entanglements) in dilute solutions. Degradation in the entanglement region proceeded via a random chain-scission mechanism as tested by the Scott method. In contrast, at low concentrations degradation was characterized by the formation of appreciable amounts of low molecular weight polystyrene. The presence of an antioxidant (Ionol) during freezing did not change the extent of degradation significantly.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 13 (1975), S. 1177-1186 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: High-density polyethylene filaments prepared by a solid-state deformation in an Instron capillary rheometer show unusually high crystal orientation, chain extension, axial modulus, and ultimate tensile strength. The Young's modulus and ultimate tensile strength have been determined from stress-strain curves. Gripping of this high modulus polyethylene has been a problem heretofore, but the measurement of ultimate tensile strength has now been made feasible by a special gripping procedure. Tensile moduli show an increase with sample preparation temperature and pressure. Values as high as 6.7 × 1011 dyne/cm2 are obtained from samples extruded at 134°C and 2400 atm and tested at a strain rate of 3.3 × 10-4 sec-1. The effect of strain rate and frequency on modulus has also been evaluated by a combination of stress-strain data and dynamic tension plus sonic measurements over nine decades of time.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 13 (1975), S. 2031-2048 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Transparent strands of high-density polyethylene of unusually high c-axis orientation have been produced by a solid-state extrusion, involving pressure, temperature, and deformation, in an Instron capillary rheometer. Measured values for tensile modulus are higher than previously reported for any polyolefin. Previous modulus and electron microscopic data are consistent with a strand morphology comprised (≤20%) of of extended chain crystals. The remainder resembles an oriented fibrillar morphology such as found in highly drawn polyethylene. In the present study, fuming nitric acid etching of the ultraoriented strands, in combination with gel permeation chromatography (GPC), has provided incisive structural information. The strands exhibit ≥3X the resistance to acid degradation shown by conventionally drawn polyethylene. GPC molecular weight distributions (MWD) of etched samples show a single broad peak with a prominent high molecular weight tail. The crystal size, represented by the MWD, is in agreement with the crystal long period determined by small-angle x-ray scattering. The absence of multiple peaks in the etched MWD's is evidence of limited chain folding. The extended chain content, determined from the etched MWD's, is a strong function of strand formation temperature and is in agreement with the fraction of extended chains calculated from modulus measurements.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 16 (1978), S. 1729-1737 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The tensile properties have been evaluated for high-density solid-state polyethylene extruded to different extrusion (draw) ratios. The results are compared with measured and theoretical values on this and other polymers. An extrusion (draw) ratio and a deformation gradient are defined and discussed. The content of extended tie molecules in extruded high-density polyethylene was calculated from a model and modulus data.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Ultra-oriented high-density polyethylene fibers (HDPE) have been prepared by solid-state extrusion over 60-140°C range using capillary draw ratios up to 52 and extrusion pressures of 0.12 to 0.49 GPa. The properties of the fibers have been assessed by birefringence, thermal expansivity, differential scanning calorimetry, x-ray analysis, and mechanical testing. A maximum birefringence of 0.0637 ± 0.0015 was obtained, greater than the calculated value of 0.059 for the intrinsic birefringence of the orthorhombic crystal phase. The maximum modulus obtained was 70 GPa. The melting point, density, crystallinity, and negative thermal expansion coefficient parallel to the fiber axis all increase rapidly with draw ratio and at draw ratios of 20-30 attain limiting values comparable with those of a polyethylene single crystal. The properties of the fibers have been analyzed using the simple rule of mixtures, assuming a two-phase model of crystalline and noncrystalline microstructure. The orientation of the noncrystalline phase with draw ratio was determined by birefringence and x-ray measurements. Solid-state extrusion of HDPE near the ambient melting point produced a c-axis orientation of 0.996 and a noncrystalline orientation function of 0.36. Extrusion 50°C below the ambient melting point produced a decrease in crystallinity, c-axis orientation, melting point, and birefringence, but the noncrystalline orientation increased at low draw ratios and was responsible for the increased thermal shrinkage of the fibers.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 18 (1980), S. 361-388 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Rheological studies were carried out on concentrated m-cresol solutions of two helical synthetic polypeptides; poly-γ-benzyl-L-glutamate (PBLG; molecular weight, 150,000) and poly-∊-carbobenzyloxy-L-lysine (PCBZL; molecular weight, 200,000). Steady shear measurements were made over a range of 0.01-16,000 sec-1 to obtain steady shear viscosity and first normal stress difference. Dynamic viscosity and dynamic storage modulus were measured both by oscillatory shear between cone and plate and also by an eccentric rotating disk device over frequency ranges of 0.1-400 and 0.1-63 rad/sec, respectively. The concentration ranges were such that both liquid crystalline and isotropic solutions were investigated. The previously reported observations of an apparent negative first normal stress difference within a defined range of shear rate for liquid crystalline solutions were confirmed for the PBLG and PCBZL solutions. At high shear rates the peaks in plots of steady shear viscosity against concentration were profoundly suppressed but peaks in first normal stress difference versus concentration were not. The observation of liquid crystalline order in PCBZL/m-cresol solutions at room temperature constitutes evidence that the inverse coil-helix transition temperature is lower in concentrated solutions than in dilute solutions. The critical concentration for formation of the liquid crystalline phase was higher for PCBZL than for PBLG, despite a higher axial ratio, due to helix flexibility.
    Additional Material: 30 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 20 (1982), S. 633-640 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Measurements on the linear thermal expansivities α∥ and α⊥ parallel and perpendicular to the extrusion direction, respectively, have been carried out between -160 and 30°C for atactic polystyrene (aPS) with extrusion ratio 1 ≤λ≤ 15 and isotactic polystyrene (iPS) with 1 ≤λ≤ 7.5. For both aPS and iPS, α∥ decreases sharply with increasing λ whereas α⊥ shows only a slight increase. Below λ = 5 the anisotropy α⊥/α∥ is nearly the same for both, but α⊥/α∥ for iPS becomes much larger at higher λ. This is accompanied by an abrupt rise in crystallinity and probably results from the increase in the number and tautness of intercrystalline tie molecules. The birefringences of aPS and iPS increase with λ and have nearly the same values for λ 〈 5. At higher λ, however, there is a sharp rise in the birefringence of iPS which is probably associated with the sudden increase in crystallinity. With an aggregate model, the chain orientation function for aPS calculated from thermal expansivity is found to be in reasonable agreement with the corresponding value obtained from birefringence.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Physics Edition 21 (1983), S. 389-400 
    ISSN: 0098-1273
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The effects of initial morphology and extrusion temperature on the orientational anisotropy and conformational changes on coextrusion drawing of poly(ethylene terephthalate) (PET) have been determined by Fourier-transform polarized infrared spectroscopy. The samples were drawn from both amorphous and semicrystalline (50%) PET at 50 and 90°C. A strong influence of coextrusion drawing temperature was observed for overall chain orientation evaluated from the dichroic ratio of the 795-cm-1 band for the samples prepared from the amorphous state: this dependence was less prominent in samples drawn from the semicrystalline state. Under the same drawing conditions, the dichroic ratio for the 973-cm-1 trans band for samples prepared from the amorphous state was higher than from the semicrystalline state. Furthermore, in all samples, the relative intensity of this band was almost proportional to the degree of crystallinity. In all samples, the gauche content, evaluated from the 896-cm-1 band, decreased with increasing draw ratio. However, the dichroic ratio of this band was near unity regardless of draw ratio, initial morphology, or extrusion temperature. From these results it is considered that all gauche units in the amorphous phase are almost isotropic in the extrusion-drawn samples with overall orientation arising largely from the crystalline chains possessing totally the trans conformation (973 cm-1) in its content. In order to evaluate the deformation mechanism of the coextrusion drawing method, the relationship between the bulk and film surface orientation is also reported.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...