ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Letters  (2)
  • Instrumentation and Photography  (1)
  • 1
    Publication Date: 2015-01-28
    Description: Saitta and Saija (1) claim that ab initio simulations of the 1953 Miller experiment (2) provide new insights into the mechanism of prebiotic synthesis of glycine (Gly) and, by implication, other molecules in this classic experiment. However, decades of research into prebiotic amino acid formation in such experiments conflict with...
    Keywords: Letters
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-28
    Description: Pizzarello et al. (1) recently described the soluble organic content of eight Antarctic Renazzo-type (CR) carbonaceous chondrites and reported large enantiomeric excesses (ee) of l-isoleucine and d-alloisoleucine. The reported values of ee decrease with inferred increases in aqueous alteration. We believe the conclusions presented in the paper are not fully...
    Keywords: Letters
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: The MOD (Mars Organic Detector) instrument which has selected for the definition phase of the BEDS package on the 2005 Mars Explorer Program spacecraft is designed to simply detect the presence of amino acids in Martian surface samples at a sensitivity of a few parts per billion (ppb). An additional important aspect of amino acid analyses of Martian samples is identifying and quantifying which compounds are present, and also distinguishing those produced abiotically from those synthesized by either extinct or extant life. Amino acid homochirality provides an unambiguous way of distinguishing between abiotic vs. biotic origins. Proteins made up of mixed D- and L-amino acids would not likely have been efficient catalysts in early organisms because they could not fold into bioactive configurations such as the a-helix. However, enzymes made up of all D-amino acids function just as well as those made up of only L-amino acids, but the two enzymes use the opposite stereoisomeric substrates. There are no biochemical reasons why L-amino acids would be favored over Damino acids. On Earth, the use of only L-amino acids in proteins by life is probably simply a matter of chance. We assume that if proteins and enzymes were a component of extinct or extant life on Mars, then amino acid homochirality would have been a requirement. However, the possibility that Martian life was (or is) based on D-amino acids would be equal to that based on L-amino acids. The detection of a nonracemic mixture of amino acids in a Martian sample would be strong evidence for the presence of an extinct or extant biota on Mars. The finding of an excess of D-amino acids would provide irrefutable evidence of unique Martian life that could not have been derived from seeding the planet with terrestrial life (or the seeding of the Earth with Martian life). In contrast, the presence of racemic amino acids, along with non-protein amino acids such as alpha-aminoisobutyric acid and isovaline, would be indicative of an abiotic origin, although we have to consider the possibility that the racemic amino acids were generated from the racemization of biotically produced amino acids.
    Keywords: Instrumentation and Photography
    Type: Concepts and Approaches for Mars Exploration; Part 2; 209-210; LPI-Contrib-1062-Pt-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...