ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Carbon preforms used in Thermal Protection System (TPS) materials are 80 to 90% porous, allowing for boundary layer and pyrolysis gases to flow through the porous regions. The bulk material properties such as permeability and hydraulic tortuosity factor affect the transport of the boundary layer gases. The use of Direct Simulation Monte Carlo along with the Klinkenberg permeability formulation allows us to compute the continuum permeability and Knudsen correction factor for flow in the transition regime. In this work, we have computed the permeability for two types of carbon preforms, namely, Morgan Felt and FiberForm, and assessed the effect of orientation on the permeability. Since both the materials are anisotropic, the permeability was found to depend on orientation, wherein, the materials are more permeable in the in-plane orientation than the through-thickness orientation. The through-thickness orientation was also more tortuous compared to the in-plane material orientation. Compared to Morgan Felt, FiberForm is less permeable, in both, through thickness and in-plane directions.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN50011 , AIAA SciTech 2018; Jan 08, 2018 - Jan 12, 2018; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Emission spectroscopy measurements in the post-shock layer in front of low density ablative material samples of different shapes were obtained in the NASA Langley HYMETS arcjet facility. A horizontal line of measurement positions was imaged on the entrance slit of the spectrometer allowing detection of the entire stagnation line in front of the samples. The stagnation line measurements were used to compare the post-shock layer emission signatures in front of PICA and FiberForm. The emission signatures of H, NH, and OH are characteristic for pyrolysis gases and consequently were only observed in front of the PICA samples. CN and C were found in front of both materials and are mainly due to interactions of the carbon fibers with the plasma. In all tests with instrumented samples, the emission of Mn, Cr, and Ni was observed when the thermocouple temperatures reached or exceeded ~1,500 K, strongly indicating erosion of the molten thermocouple tips. Temperatures in the post-shock layer were estimated from comparing the CN band emission to spectral simulation. The resulting rotational and vibrational temperatures were on the order of 7,000 to 9,000 K and close to each other indicating a plasma condition close to equilibrium. In addition to the stagnation line configurations, off-axis lines of observation were investigated to gather information about spalled particles in the flow. From a comparison of measured continuum emission with simulated Planck radiation, average particle temperatures along the measured line of observation were determined for two cases. Particle temperatures between 3,500 and 2,000 K were found. A comprehensive investigation of the entire amount of data set is ongoing.
    Keywords: Instrumentation and Photography
    Type: NF1676L-22893 , AIAA Aviation 2016; Jun 13, 2016 - Jun 17, 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The spallation phenomenon was studied through numerical analysis using a coupled Lagrangian particle tracking code and a hypersonic aerothermodynamics computational fluid dynamics solver. The results show that carbon emission from spalled particles results in a significant modification of the gas composition of the post shock layer. Preliminary results from a test-campaign at the NASA Langley HYMETS facility are presented. Using an automated image processing of high-speed images, two-dimensional velocity vectors of the spalled particles were calculated. In a 30 second test at 100 W/cm2 of cold-wall heat-flux, more than 1300 particles were detected, with an average velocity of 102 m/s, and most frequent observed velocity of 60 m/s.
    Keywords: Instrumentation and Photography
    Type: NF1676L-20135 , European Symposium on Aerothermodynamics for Space Vehicles; Mar 02, 2015 - Mar 06, 2015; Lisbon; Portugal
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: A method of remotely measuring surface recession of a material sample in a plasma flow through emission spectroscopy of the post shock layer was characterized through experiments in the NASA Langley HYMETS arc jet facility. Different methods for delivering the seed products into the Phenolic Impregnated Carbon Ablator (PICA) material samples were investigated. Three samples were produced by seeding the PICA material with combinations of Al, Si, HfO2, VB2, Al2O3, SiO2, TiC, HfC, NaCl, and MgCl2 through infusing seed materials into a core of PICA, or through encapsulating seed material in an epoxy disk, mechanically bonding the disk to a PICA sample. The PICA samples seeded with the candidate tracers were then tested at surface temperatures near 2400 K under low pressure air plasma. The emission of Al, Ti, V, Na, and Mg in the post-shock layer was observed in the UV with a high resolution imaging spectrometer viewing the whole stagnation line from the side, and from UV to NIR with a fiber-coupled miniaturized spectrometer observing the sample surface in the wavelength range from 200 nm to 1,100 nm from the front through a collimator. Al, Na, and Mg were found to be emitting in the post-shock spectra even before the recession reached the seeding depth - therefore possibly characterizing the pyrolysis process rather than the recession itself. The appearance of Ti and V emission in the spectra was well correlated with the actual recession which was monitored through a video of the front surface of the sample. The applicability of a seed material as an indicator for recession appears to be related to the melting temperature of the seed material. Future parametric studies will be carried out in low power plasma facilities at the University of Kentucky.
    Keywords: Instrumentation and Photography
    Type: NF1676L-23206 , 2016 AIAA SciTech Forum and Exposition; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...