ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Instrumentation and Photography  (197)
  • 2000-2004  (197)
  • 1
    Publication Date: 2018-06-08
    Description: The Jet Propulsion Laboratory is developing a new imaging interferometer that has double the efficiency of conventional interferometers and only a fraction of the mass and volume. The project is being funded as part of the Defense Advanced Research Projects Agency (DARPA) Photonic Wavelength And Spatial Signal Processing program (PWASSSP).
    Keywords: Instrumentation and Photography
    Type: QWIP 2002 Workshop; Torino; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-10-30
    Description: The addition of a comprehensive wave investigation to the Jupiter Icy Moons Orbiter (JIMO) science payload will provide a broad range of information on the icy moons of Jupiter including the detection of subsurface liquid oceans; mapping of their ionospheres; their interaction with the magnetospheric environment; and on the Jovian magnetosphere. These measurements are obtained through the use of both passive and active (sounding) means over broad frequency ranges. The frequency range of interest extends from less than 1 Hz to 40 MHz for passive measurements, from approximately 1 kHz to a few MHz for magnetospheric and ionospheric sounding, and between 1 and approximately 10 MHz for subsurface radar sounding. An instrument to detect subsurface radar sounding, magnetospheric interactions, and ionospheric sounding is discussed.
    Keywords: Instrumentation and Photography
    Type: Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter; 42; LPI-Contrib-1163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: The purpose of this research is to develop, test and calibrate a prototype portable device that will measure human metabolic activity; namely time resolved measurements of gas temperature, pressure and flow-rate, and oxygen and carbon dioxide partial pressure during inhalation and exhalation.
    Keywords: Instrumentation and Photography
    Type: Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Presentations, Volume 1; 154-163; NASA/CP-2004-213205/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: This paper discusses the development and design of an experimental test cell for ground-based testing to provide requirements for the Spaceflight Holography Investigation in a Virtual Apparatus (SHIVA) experiment. Ground-based testing of a hardware breadboard set-up is being conducted at Marshall Space Flight Center in Huntsville, Alabama. SHIVA objectives are to test and validate new solutions of the general equation of motion of a particle in a fluid, including particle-particle interaction, wall effects, motion at higher Reynolds Number, and a motion and dissolution of a crystal moving in a fluid. These objectives will be achieved by recording a large number of holograms of particle motion in the International Space Station (ISS) glove box under controlled conditions, extracting the precise three- dimensional position of all the particles as a function of time, and examining the effects of all parameters on the motion of the particles. This paper will describe the mechanistic approach to enabling the SHIVA experiment to be performed in a ISS glove box in microgravity. Because the particles are very small, surface tension becomes a major consideration in designing the mechanical method to meet the experiments objectives in microgravity, To keep a particle or particles in the center of the test cell long enough to perform and record the experiment and to preclude contribution to particle motion, requires avoiding any initial velocity in particle placement. A Particle Injection Mechanism (PIM) designed for microgravity has been devised and tested to enable SHIVA imaging. Also, a test cell capture mechanism, to secure the test cell during vibration on a specially designed shaker table for the SHIVA experiment will be described. Concepts for flight design are also presented.
    Keywords: Instrumentation and Photography
    Type: 41st Aerospace Sciences Meeting and Exhibit; Jan 06, 2003 - Jan 09, 2003; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The High resolution Airborne Wideband Camera (HAWC) and the Submillimeter High Angular Resolution Camera II (SHARC 11) will use almost identical versions of an ion-implanted silicon bolometer array developed at the National Aeronautics and Space Administration's Goddard Space Flight Center (GSFC). The GSFC "Pop-Up" Detectors (PUD's) use a unique folding technique to enable a 12 x 32-element close-packed array of bolometers with a filling factor greater than 95 percent. A kinematic Kevlar(Registered Trademark) suspension system isolates the 200 mK bolometers from the helium bath temperature, and GSFC - developed silicon bridge chips make electrical connection to the bolometers, while maintaining thermal isolation. The JFET preamps operate at 120 K. Providing good thermal heat sinking for these, and keeping their conduction and radiation from reaching the nearby bolometers, is one of the principal design challenges encountered. Another interesting challenge is the preparation of the silicon bolometers. They are manufactured in 32-element, planar rows using Micro Electro Mechanical Systems (MEMS) semiconductor etching techniques, and then cut and folded onto a ceramic bar. Optical alignment using specialized jigs ensures their uniformity and correct placement. The rows are then stacked to create the 12 x 32-element array. Engineering results from the first light run of SHARC II at the CalTech Submillimeter Observatory (CSO) are presented.
    Keywords: Instrumentation and Photography
    Type: SPIE Conference of Astronomical Telescopes and Instrumentation; Aug 22, 2002 - Aug 28, 2002; Waikoloa, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The NASA New Millennium Program's Geostationary Imaging Fourier Transform Spectrometer (GIFTS) requires highly accurate radiometric and spectral calibration in order to carry out its mission to provide water vapor, wind, temperature, and trace gas profiling from geostationary orbit. A calibration concept has been developed for the GIFTS Phase A instrument design. The in-flight calibration is performed using views of two on-board blackbody sources along with cold space. A radiometric calibration uncertainty analysis has been developed and used to show that the expected performance for GIFTS exceeds its top level requirement to measure brightness temperature to better than 1 K. For the Phase A GIFTS design, the spectral calibration is established by the highly stable diode laser used as the reference for interferogram sampling, and verified with comparisons to atmospheric calculations.
    Keywords: Instrumentation and Photography
    Type: Hyperspectral Remote Sensing of the Land and Atmosphere; 4151; 21-31
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: A compact, portable and robust room temperature CH4 sensor is reported. By difference frequency mixing a 500 mW alpha-DFB diode laser at 1066 nm and an erbium-doped fiber amplified 1574 nm DFB diode laser in periodically poled lithium niobate up to 7 (mu)W of narrowband radiation at 3.3 microns is generated. Real-time monitoring of CH4 over a 7 day period using direct absorption in an open-path multipass cell (L = 36 m) demonstrates a detection precision of +/- 14 ppb.
    Keywords: Instrumentation and Photography
    Type: Optics communications (ISSN 0030-4018); Volume 175; 4-6; 461-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-03
    Description: High energy charged particles of extragalactic, galactic, and solar origin collide with spacecraft structures and planetary atmospheres. These primaries create a number of secondary particles inside the structures or on the surfaces of planets to produce a significant radiation environment. This radiation is a threat to long term inhabitants and travelers for interplanetary missions and produces an increased risk of carcinogenesis, central nervous system (CNS) and DNA damage. Charged particles are readily detected; but, neutrons, being electrically neutral, are much more difficult to monitor. These secondary neutrons are reported to contribute 30-60% of the dose equivalent in the Shuttle and MIR station. The Martian atmosphere has an areal density of 37 g/sq cm primarily of carbon dioxide molecules. This shallow atmosphere presents fewer mean free paths to the bombarding cosmic rays and solar particles. The secondary neutrons present at the surface of Mars will have undergone fewer generations of collisions and have higher energies than at sea level on Earth. Albedo neutrons produced by collisions with the Martian surface material will also contribute to the radiation environment. The increased threat of radiation damage to humans on Mars occurs when neutrons of higher mean energy traverse the thin, dry Martian atmosphere and encounter water in the astronaut's body. Water, being hydrogeneous, efficiently moderates the high energy neutrons thereby slowing them as they penetrate deeply into the body. Consequently, greater radiation doses can be deposited in or near critical organs such as the liver or spleen than is the case on Earth. A second significant threat is the possibility of a high energy heavy ion or neutron causing a DNA double strand break in a single strike.
    Keywords: Instrumentation and Photography
    Type: Concepts and Approaches for Mars Exploration; Part 2; 213-214; LPI-Contrib-1062-Pt-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-03
    Description: NASA's long term plan for Mars sample collection and return requires a highly streamlined approach for spectrally characterizing a landing site, documenting the mineralogical make-up of the site and guiding the collections of samples which represent the diversity of the site. Ideally, image data should be acquired at hundreds of VIS and IR wavelengths, in order to separately distinguish numerous anticipated species, using principal component analysis and linear unmixing. Cameras with bore-sighted point spectrometers can acquire spectra of isolated scene elements, but it requires 10(exp 2) to 10(exp 2) successive motions and precise relative pointing knowledge in order to create a single data cube which qualifies as a spectral map. These and other competing science objectives have to be accomplished within very short lander/rover operational lifetime (a few sols). True, 2-D imaging spectroscopy greatly speeds up the data acquisition process, since the spectra of all pixels in the scene are collected at once. This task can be accomplished with cameras that use electronically tunable acousto-optic tunable filters (AOTFs) as the optical tuning element. AOTFs made from TeO2 are now a mature technology, and operate at wavelengths from near-UV to about 5 microns. Because of incremental improvements in the last few years, present generation devices are rugged, radiation-hard and operate at temperatures down to at least 150K so they can be safely integrated into the ambient temperature optics of in-situ instruments such as planetary or small-body landers. They have been used for ground-based astronomy, and were also baselined for the ST-4 Champollion IR comet lander experiment (CIRCLE), prior to cancellation of the ST-4 mission last year. AIMS (for Acousto-optic Imaging spectrometer), is a prototype lander instrument which is being built at GSFC with support by the NASA OSS Advanced Technologies and Mission Studies, Mars Instrument Definition and Development Program (MIDP). AIMS is capable of tunable spectroscopic imaging of surface mineralogy, ices and dust between 0.5 and 2.4 microns, at a resolving power (lambda/delta lambda) which is typically several hundred. The design spatial resolution, similar to IMP and SSI, will allow mapping at scales down to about 1 cm.
    Keywords: Instrumentation and Photography
    Type: Concepts and Approaches for Mars Exploration; Part 1; 125-126; LPI-Contrib-1062
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-03
    Description: The MOD (Mars Organic Detector) instrument which has selected for the definition phase of the BEDS package on the 2005 Mars Explorer Program spacecraft is designed to simply detect the presence of amino acids in Martian surface samples at a sensitivity of a few parts per billion (ppb). An additional important aspect of amino acid analyses of Martian samples is identifying and quantifying which compounds are present, and also distinguishing those produced abiotically from those synthesized by either extinct or extant life. Amino acid homochirality provides an unambiguous way of distinguishing between abiotic vs. biotic origins. Proteins made up of mixed D- and L-amino acids would not likely have been efficient catalysts in early organisms because they could not fold into bioactive configurations such as the a-helix. However, enzymes made up of all D-amino acids function just as well as those made up of only L-amino acids, but the two enzymes use the opposite stereoisomeric substrates. There are no biochemical reasons why L-amino acids would be favored over Damino acids. On Earth, the use of only L-amino acids in proteins by life is probably simply a matter of chance. We assume that if proteins and enzymes were a component of extinct or extant life on Mars, then amino acid homochirality would have been a requirement. However, the possibility that Martian life was (or is) based on D-amino acids would be equal to that based on L-amino acids. The detection of a nonracemic mixture of amino acids in a Martian sample would be strong evidence for the presence of an extinct or extant biota on Mars. The finding of an excess of D-amino acids would provide irrefutable evidence of unique Martian life that could not have been derived from seeding the planet with terrestrial life (or the seeding of the Earth with Martian life). In contrast, the presence of racemic amino acids, along with non-protein amino acids such as alpha-aminoisobutyric acid and isovaline, would be indicative of an abiotic origin, although we have to consider the possibility that the racemic amino acids were generated from the racemization of biotically produced amino acids.
    Keywords: Instrumentation and Photography
    Type: Concepts and Approaches for Mars Exploration; Part 2; 209-210; LPI-Contrib-1062-Pt-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...