ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing  (23)
  • Instrumentation and Photography  (10)
  • 2015-2019  (10)
  • 2000-2004  (23)
  • 1
    Publication Date: 2018-06-08
    Keywords: Earth Resources and Remote Sensing
    Type: International Geoscience and Remote Sensing Symposium (IGARSS); Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-08
    Description: The Local Scale Observation Site (LSOS) is the smallest study site of the Cold LandProcesses Experiment (CLPX) and is located within the Fraser Meso-cell Study Area (MSA), near the Fraser Experimental Forest Headquarters Facility, in Fraser, CO USA.The 100-m x 100-m site consists of a small open field, a managed dense canopy and an open, mixed age canopy. Unlike the other components of the experiment, which focus on spatial distributions at relatively brief snapshots in time, measurements at the local scale site focused on the temporal domain.
    Keywords: Earth Resources and Remote Sensing
    Type: Fall Meeting of the American Geophysical Union; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (case 1 water) using channels between 0.4 and 0.86 micrometers. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the NASA Terra and Aqua Spacecrafts is equipped with narrow channels located within a wider wavelength range between 0.4 and 2.5 micrometers for a variety of remote sensing applications. The wide spectral range can provide improved capabilities for remote sensing of the more complex and turbid coastal waters (case 2 water) and for improved atmospheric corrections for Ocean scenes. In this article, we describe an empirical algorithm that uses this wide spectral range to identifying areas with suspended sediments in turbid waters and shallow waters with bottom reflections. The algorithm takes advantage of the strong water absorption at wavelengths longer than 1 micrometer that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used in this study.
    Keywords: Earth Resources and Remote Sensing
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: This paper will describe the scientific objectives of the MSFC SUMI project and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the UV, a sounding rocket payload is being developed, This paper will describe the optical measurements that have been made on the SUMI telescope mirrors and polarization optics.
    Keywords: Instrumentation and Photography
    Type: UV/EUV and Visible Space Instrumentation for Astronomy and Solar Physics; Jul 29, 2001 - Aug 03, 2001; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: This paper will describe the polarizing optics that are being developed for an ultraviolet magnetograph (SUMI) which will be flown on a sounding rocket payload. With a limited observing program, the polarizing optics were optimized to make simultaneous observation at two magnetic lines CIV (155nm) and MgII (280). This paper will give a brief overview of the SUMI instrument, will describe the polarimeter that will be used in the sounding rocket program and will present some of the measurements that have been made on the (SUMI) polarization optics.
    Keywords: Instrumentation and Photography
    Type: Polarization Analysis and Measurement Analysis IV; Jul 29, 2001 - Aug 03, 2001; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: The major flood events in the United States in the past few years have made it apparent that many floodplain maps being used by State governments are outdated and inaccurate. In response, many Stated have begun to update their Federal Emergency Management Agency (FEMA) Digital Flood Insurance Rate Maps. Accurate topographic data is one of the most critical inputs for floodplain analysis and delineation. Light detection and ranging (LIDAR) altimetry is one of the primary remote sensing technologies that can be used to obtain high-resolution and high-accuracy digital elevation data suitable for hydrologic and hydraulic (H&H) modeling, in part because of its ability to "penetrate" various cover types and to record geospatial data from the Earth's surface. However, the posting density or spacing at which LIDAR collects the data will affect the resulting accuracies of the derived bare Earth surface, depending on terrain type and land cover type. For example, flat areas are thought to require higher or denser postings than hilly areas to capture subtle changes in the topography that could have a significant effect on flooding extent. Likewise, if an area has dense understory and overstory, it may be difficult to receive LIDAR returns from the Earth's surface, which would affect the accuracy of that bare Earth surface and thus would affect flood model results. For these reasons, NASA and FEMA have partnered with the State of North Carolina and with the U.S./Mexico Foundation in Texas to assess the effect of LIDAR point density on the characterization of topographic variation and on H&H modeling results for improved floodplain mapping. Research for this project is being conducted in two areas of North Carolina and in the City of Brownsville, Texas, each with a different type of terrain and varying land cover/land use. Because of various project constraints, LIDAR data were acquired once at a high posting density and then decimated to coarser postings or densities. Quality assurance/quality control analyses were performed on each dataset. Cross sections extracted form the high density and then the decimated datasets were individually input into an H&H model to determine the model's sensitivity to topographic variation and the effect of that variation on the resulting water profiles. Additional analysis was performed on the Brownsville, Texas, LIDAR data to determine the percentage of returns that "penetrated" various types of canopy or vegetative cover. It is hoped that the results of these studies will benefit state and local communities as they consider the post spacing at which to acquire LIDAR data (which affects cost) and will benefit FEMA as the Agency assesses the use of different technologies for updating National Flood Insurance Program and related products.
    Keywords: Earth Resources and Remote Sensing
    Type: SSTI-2220-0003-ESAD
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: There are several microwave instruments in low Earth orbit (LEO) that are used for atmospheric temperature and humidity sounding in conjunction with companion IR sounders as well as by themselves. These instruments have achieved a certain degree of maturity and undergoing a redesign to minimize their size, mass, and power from the previous generation instruments. An example of these instruments is the AMSU-A series, now flying on POES and AQUA spacecraft with the IR sounders HIRS and AIRS. These older microwave instruments are going to be replaced by the ATMS instruments that will fly on NPP and NPOESS satellites with the CrIS sounder. A number of techniques learned from the ATMS project in instrument hardware design and data processing are directly applicable to a similar microwave sounder on a geosynchronous platform. These techniques can significantly simplify the design of a Geostationary orbit (GEO) microwave instrument, avoiding costly development and minimizing the risk of not being able to meet the scientific requirements. In fact, some of the 'enabling' technology, such as the use of MMIC microwave components (which is the basis for the ATMS' much reduced volume) can be directly applied to a GEO sounder. The benefits of microwave sounders are well known; for example, they penetrate non-precipitating cloud cover and allow for use of colocated IR observations in up to 80% cloud cover. The key advantages of a microwave instrument in GEO will be the ability to provide high temporal resolution as well as uniform spatial resolution and extend the utility of a colocated advanced IR sounder to cases in which partial cloud cover exists. A footprint of the order of 100 km by 100 km resolution with hemispherical coverage within one hour can be easily achieved for sounding channels in the 50 to 59 GHz range. A GEO microwave sounder will also allow mesoscale sampling of select regions.
    Keywords: Instrumentation and Photography
    Type: 11th SPIE International Symposium on Remote Sensing; Sep 13, 2004 - Sep 17, 2004; Maspalomas, Gran Canaria; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-18
    Description: This paper will describe the objectives of the Marshall Space Flight Center (MSFC) Solar Ultraviolet Magnetograph Investigation (SUMI) and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the W, a sounding rocket payload is being developed. This paper will discuss: (1) the scientific measurements that will be made by the SUMI sounding rocket program, (2) how the optics have been optimized for simultaneous measurements of two magnetic lines CIV (1550 Angstroms) and MgII (2800 Angstroms), and (3) the optical, reflectance, transmission and polarization measurements that have been made on the SUMI telescope mirrors and polarimeter.
    Keywords: Instrumentation and Photography
    Type: SPIE Astronomical Telescopes and Instrumentation 2004; Jun 21, 2004 - Jun 25, 2004; Glasgow, Scotland; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: An optoelectronic system has been developed for measuring heights, above a floor, of designated points on a large object. In the original application for which the system was conceived, the large object is a space shuttle and the designated points are two front and two rear points for the attachment of jacks for positioning the shuttle at the height and horizontal pitch specified for maintenance operations. The front and rear jacking points are required to be raised to heights of 198 1/4 in. (502.9 0.6 cm) and 120.6 1/4 in. (306.4 0.6 cm), respectively.
    Keywords: Instrumentation and Photography
    Type: KSC-12098 , NASA Tech Briefs, March 2003; 13-14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-20
    Description: The Robotic External Leak Locator (RELL) was deployed to the International Space Station (ISS) with the objective of demonstrating the ability to detect and locate small leaks. On-orbit operations began in late November 2016 and following scanning activities to characterize the natural and induced environment of the ISS, RELL focused on the United States External Active Thermal Control System (EATCS). RELL successfully detected ammonia related to a known small ammonia leak in the port-side EATCS, with the highest pressure values around the inboard Radiator Beam Valve Module 1 (RBVM 1). An additional day of scanning was subsequently performed in December 2017 to focus on RBVM 1. RELL was approved for additional external operations in February 2017 with the goal of fine tuning the location of the leak. Using grid scanning patterns, RELL detected ammonia around RBVM 1 and located the approximate source of the leak. The potential leak site was inspected by a crew member during an Extravehicular Activity (EVA) in March 2017, and the suspected radiator-side lines were isolated from the port-side EATCS coolant loop in April 2017. Subsequent monitoring of the system pressures showed that the leak has stopped, indicating RELL accurately located the source of the EATCS leak. These activities verify that RELL enhances the ISS Program's ability to not only locate small leaks, but isolate the source with minimal impact to the entire ISS system.
    Keywords: Instrumentation and Photography
    Type: JSC-E-DAA-TN59636 , SPIE Optical Engineering + Applications; Aug 19, 2018 - Aug 23, 2018; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...