ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The intercalibration between a broadband and a hyperspectral satellite Earth observation system requires the convolution of the hyperspectral data with the spectral response functions (SRFs) of the corresponding broadband channels. There are two potential issues associated with the convolution procedure. First, the finite resolution of a hyperspectral spectrum, that is, the deviation from the highly accurate line-by-line monochromatic radiances, will contribute to convolution errors. The magnitude of the errors depends on the spectral resolution and the SRF shape of the hyperspectral instrument. This type of the convolution error has not been well recognized, and there is a lack of corresponding discussion in most published papers. Although it is small as compared with the instrument accuracy of existing hyperspectral sounders, the error is deemed to be signicant when it is compared with the stringent calibration requirement imposed by future climate missions like the Climate Absolute Radiance and Refractivity Observatory (CLARREO). Second, some broadband channels are insufficiently covered by the hyperspectral data, causing spectral gaps that lead to convolution errors. Although several methods have been developed to fill the spectral gaps and hence compensate for the second type of convolution error, the correction accuracy may still need improvement especially when a large spectral gap needs to be lled. This paper presents a methodology to accurately quantify and compensate for both types of convolution errors. This methodology utilizes the available hyperspectral information to correct the scene-dependent convolution errors due to either the limited spectral resolution or spectral gaps. We use simulations to characterize the intercalibration errors between the Moderate resolution Imaging Spectroradiometer (MODIS) and current operational infrared sounders. We demonstrate that convolution errors can be effectively removed to meet the highly accurate intersatellite calibration requirement proposed by the Climate Absolute Radiance and Refractivity Observatory. Our methodology is also validated using real satellite data for the intercalibration between Aqua MODIS and Aqua Atmospheric Infrared Sounders (AIRS). Our study demonstrates that the accurate characterization and correction for the convolution errors greatly reduces the scene-dependent and spectrally dependent errors, being critical to the consistency check between Infrared Atmospheric Sounding Interferometer (IASI) and AIRS using the double-difference method. The convolution correction also facilitates the evaluation for other intercalibration errors (e.g., the drift of MODIS SRFs). Our derived SRF shift values from MODIS-AIRS (after convolution error corrections) and from MODIS-IASI intercalibration are consistent with each other. We further extend the methodology to study the calibration of a broadband channel which is either completely or largely uncovered bya hyperspectral measurement.The large spectral gap-filling methodology is validated by demonstrating the accurate prediction of the MODIS radiance of band 29 using the Cross-track Infrared Sounder spectra, with the real IASI spectral data being used as the reference.
    Keywords: Meteorology and Climatology; Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN64776 , Journal of Geophysical Research: Atmospheres (JGR) (ISSN 2169-897X) (e-ISSN 2169-8996); 123; 17; 9238-9255
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-19
    Description: The Moderate Resolution Imaging Spectroradiometer (MODIS) instruments have successfully operated for more than 18 and 16 years, respectively, on-board the NASAs Earth Observing System Terra and Aqua spacecraft. Both Terra and Aqua MODIS have significantly contributed to the advance of global Earth remote sensing applications with a broad range of science products that have been continuously produced since the beginning of each mission and freely distributed to users worldwide. MODIS collects data in 20 reflective solar bands (RSB) and 16 thermal emissive bands (TEB), covering wavelengths from 0.41 to 14.4 m. Its level 1B (L1B) data products, which provide the input for the MODIS high-level science products, include the top of the atmosphere reflectance factors for the RSB, radiances for both the RSB and TEB, and associated uncertainty indices (UI) at a pixel-by-pixel level. This paper provides a brief review of MODIS L1B calibration algorithms, including a number of improvements made in recent years. It presents an update of sensor calibration uncertainty assessments with a focus on several new contributors resulting from on-orbit changes in sensor characteristics, approaches developed to address these changes, and the impact due to on-orbit changes on the L1B data quality. Also discussed are remaining challenges and potential improvements to be made to continuously maintain sensor calibration and data quality, particularly those related to the quality of MODIS L1B uncertainty.
    Keywords: Instrumentation and Photography; Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN65828 , Journal of Applied Remote Sensing (e-ISSN 1931-3195); 12; 3; 034001
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Moderate Resolution Imaging Spectroradiometer (MODIS) is the keystone instrument for NASAs EOS Terra and Aqua missions, designed to extend and improve heritage sensor measurements and data records of the land, oceans and atmosphere. The reflective solar bands (RSB) of MODIS covering wavelengths from 0.41 micrometers to 2.2 micrometers, are calibrated on-orbit using a solar diffuser (SD), with its on-orbit bi-directional reflectance factor (BRF) changes tracked using a solar diffuser stability monitor (SDSM). MODIS is a scanning radiometer using a two-sided paddle-wheel mirror to collect earth view (EV) data over a range of (+/-)55 deg. off instrument nadir. In addition to the solar calibration provided by the SD and SDSM system, lunar observations at nearly constant phase angles are regularly scheduled to monitor the RSB calibration stability. For both Terra and Aqua MODIS, the SD and lunar observations are used together to track the on-orbit changes of RSB response versus scan angle (RVS) as the SD and SV port are viewed at different angles of incidence (AOI) on the scan mirror. The MODIS Level 1B (L1B) Collection 6 (C6) algorithm incorporated several enhancements over its predecessor Collection 5 (C5) algorithm. A notable improvement was the use of the earth-view (EV) response trends from pseudo-invariant desert targets to characterize the on-orbit RVS for select RSB (Terra bands 1-4, 8, 9 and Aqua bands 8, 9) and the time, AOI, and wavelength-dependent uncertainty. The MODIS Characterization Support Team (MCST) has been maintaining and enhancing the C6 algorithm since its first update in November, 2011 for Aqua MODIS, and February, 2012 for Terra MODIS. Several calibration improvements have been incorporated that include extending the EV-based RVS approach to other RSB, additional correction for SD degradation at SWIR wavelengths, and alternative approaches for on-orbit RVS characterization. In addition to the on-orbit performance of the MODIS RSB, this paper also discusses in detail the recent calibration improvements implemented in the MODIS L1B C6.
    Keywords: Instrumentation and Photography; Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN41148 , Proceedings of SPIE: Earth Observing Missions and Sensors: Development, Implementation, and Characterization IV; 9881; 98811F|Earth Observing Missions and Sensors: Development, Implementation, and Characterization IV 2016; Apr 04, 2016 - Apr 07, 2016; New Delhi; India
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...