ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Inverse methods  (2)
  • Instability  (1)
  • Inverse modeling  (1)
  • 2015-2019  (4)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 30 (2015): 1470-1489, doi:10.1002/2014PA002743.
    Description: The ocean circulation modifies mixed layer (ML) tracer signals as they are communicated to the deep ocean by advection and mixing. We develop and apply a procedure for using tracer signals observed “upstream” (by planktonic foraminifera) and “downstream” (by benthic foraminifera) to constrain how tracer signals are modified by the intervening circulation and, by extension, to constrain properties of that circulation. A history of ML equilibrium calcite δ18O (δ18Oc) spanning the last deglaciation is inferred from a least-squares fit of eight benthic foraminiferal δ18Oc records to Green's function estimated for the modern ocean circulation. Disagreements between this history and the ML history implied by planktonic records would indicate deviations from the modern circulation. No deviations are diagnosed because the two estimates of ML δ18Oc agree within their uncertainties, but we suggest data collection and modeling procedures useful for inferring circulation changes in future studies. Uncertainties of benthic-derived ML δ18Oc are lowest in the high-latitude regions chiefly responsible for ventilating the deep ocean; additional high-resolution planktonic records constraining these regions are of particular utility. Benthic records from the Southern Ocean, where data are sparse, appear to have the most power to reduce uncertainties in benthic-derived ML δ18Oc. Understanding the spatiotemporal covariance of deglacial ML δ18Oc will also improve abilities of δ18Oc records to constrain deglacial circulation.
    Description: 2016-05-12
    Keywords: Oxygen isotopes ; Inverse modeling ; Deglaciation ; Tracers ; Ocean circulation ; Green's function
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 31 (2018): 8059-8079, doi:10.1175/JCLI-D-17-0769.1.
    Description: We use the method of least squares with Lagrange multipliers to fit an ocean general circulation model to the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) estimate of near sea surface temperature (NSST) at the Last Glacial Maximum (LGM; circa 23–19 thousand years ago). Compared to a modern simulation, the resulting global, last-glacial ocean state estimate, which fits the MARGO data within uncertainties in a free-running coupled ocean–sea ice simulation, has global-mean NSSTs that are 2°C lower and greater sea ice extent in all seasons in both the Northern and Southern Hemispheres. Increased brine rejection by sea ice formation in the Southern Ocean contributes to a stronger abyssal stratification set principally by salinity, qualitatively consistent with pore fluid measurements. The upper cell of the glacial Atlantic overturning circulation is deeper and stronger. Dye release experiments show similar distributions of Southern Ocean source waters in the glacial and modern western Atlantic, suggesting that LGM NSST data do not require a major reorganization of abyssal water masses. Outstanding challenges in reconstructing LGM ocean conditions include reducing effects from model biases and finding computationally efficient ways to incorporate abyssal tracers in global circulation inversions. Progress will be aided by the development of coupled ocean–atmosphere–ice inverse models, by improving high-latitude model processes that connect the upper and abyssal oceans, and by the collection of additional paleoclimate observations.
    Description: DEA was supported by a NSF Graduate Research Fellowship and NSF Grant OCE-1060735. OM acknowledges support from the NSF. GF was supported by NASA Award 1553749 and Simons Foundation Award 549931.
    Keywords: Ocean ; Abyssal circulation ; Sea surface temperature ; Paleoclimate ; Inverse methods ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2019. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography, 49 (2), (2019): 607-630, doi:10.1175/JPO-D-18-0166.1.
    Description: The Lagrangian motion in the eddy field produced from an unstable retrograde jet along the shelf break is studied from idealized numerical experiments with a primitive equation model. The jet is initially in thermal wind balance with a cross-isobath density gradient and is not subjected to any atmospheric forcing. Over the course of the model integration, the jet becomes unstable and produces a quasi-stationary eddy field over a 2-month period. During this period, the cross-slope flow at the shelf break is characterized by along-slope correlation scales of O(10) km and temporal correlation scales of a few days. The relative dispersion of parcels across isobaths is found to increase with time as tb, where 1 〈 b 〈 2. This mixed diffusive–ballistic regime appears to reflect the combined effects of (i) the short length scales of velocity correlation at the shelf break and (ii) the seaward excursion of monopolar and dipolar vortices. Cross-slope dispersion is greater offshore of the front than inshore of the front, as offshore parcels are both subducted onshore below density surfaces and translated offshore with eddies. Nonetheless, the exchange of parcels across the jet remains very limited on the monthly time scale. Particles originating from the bottom experience upward displacements of a few tens of meters and seaward displacements of O(100) km, suggesting that the eddy activity engendered by an unstable along-slope jet provides another mechanism for bottom boundary layer detachment near the shelf edge.
    Description: The author expresses his gratitude to the researchers who contributed to the development and public dissemination of POM [for a list of contributors, see Mellor (2002) and comments in the source code]. Discussions with Kenneth Brink, Hyodae Seo, and Weifeng Zhang have been helpful. Comments provided by Kenneth Brink on a draft are gratefully acknowledged. The criticism from two anonymous reviewers allowed us to better focus the manuscript and to significantly improve its clarity. This work has been supported by Grant OCE-1556400 from the U.S. National Science Foundation.
    Description: 2020-02-18
    Keywords: Dispersion ; Eddies ; Frontogenesis/frontolysis ; Instability ; Lagrangian circulation/transport ; Jets
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2016. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 29 (2016): 1545-1571, doi:10.1175/JCLI-D-15-0509.1.
    Description: Three sediment records of sea surface temperature (SST) are analyzed that originate from distant locations in the North Atlantic, have centennial-to-multicentennial resolution, are based on the same reconstruction method and chronological assumptions, and span the past 15 000 yr. Using recursive least squares techniques, an estimate of the time-dependent North Atlantic SST field over the last 15 kyr is sought that is consistent with both the SST records and a surface ocean circulation model, given estimates of their respective error (co)variances. Under the authors’ assumptions about data and model errors, it is found that the 10°C mixed layer isotherm, which approximately traces the modern Subpolar Front, would have moved by ~15° of latitude southward (northward) in the eastern North Atlantic at the onset (termination) of the Younger Dryas cold interval (YD), a result significant at the level of two standard deviations in the isotherm position. In contrast, meridional movements of the isotherm in the Newfoundland basin are estimated to be small and not significant. Thus, the isotherm would have pivoted twice around a region southeast of the Grand Banks, with a southwest–northeast orientation during the warm intervals of the Bølling–Allerød and the Holocene and a more zonal orientation and southerly position during the cold interval of the YD. This study provides an assessment of the significance of similar previous inferences and illustrates the potential of recursive least squares in paleoceanography.
    Description: OM acknowledges support from the U.S. National Science Foundation. CW acknowledges support from the European Research Council ERC Grant ACCLIMATE 339108.
    Description: 2016-08-19
    Keywords: Geographic location/entity ; North Atlantic Ocean ; Circulation/ Dynamics ; Fronts ; Mathematical and statistical techniques ; Inverse methods ; Kalman filters ; Variability ; Climate variability ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...