ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Insect quality  (1)
  • 2000-2004  (1)
  • 1910-1914
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Population ecology 42 (2000), S. 231-241 
    ISSN: 1437-5613
    Keywords: Key words Population cycles ; Nucleopolyhedrovirus ; NPV ; Insect quality ; Metapopulation ; Island populations ; Forest tent caterpillars ; Sublethal disease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cyclic populations of western tent caterpillars fluctuate with a periodicity of 6–11 years in southwestern British Columbia, Canada. Typically, larval survival is high in early stages of the population increase, begins to decline midway through the increase phase, and is low through several generations of the population decline. Fecundity is generally high in increasing and in peak populations but is also reduced during the population decline. Poor survival and low fecundity for several generations cause the lag in recovery of populations that is necessary for cyclic dynamics. The dynamics of tent caterpillar populations vary among sites, which suggests a metapopulation structure; island populations in the rainshadow of Vancouver Island have more consistent cyclic dynamics than mainland populations in British Columbia. Sudden outbreaks of populations that last a single year suggest that dispersal from source to sink populations may occur late in the phase of population increase. Wellington earlier discussed qualitative variation among tent caterpillar individuals as an aspect of population fluctuations. The variation in caterpillar activity he observed was largely statistically nonsignificant. Recent observations show that the frequency of elongate tents as described by Wellington to characterize active caterpillars varies among populations but does not change in a consistent pattern with population density. The level of infection from nucleopolyhedrovirus (NPV) was high in some populations at peak density but was not associated with all population declines. Sublethal infection can reduce the fecundity of surviving moths, and there is a weak association between viral infection and egg mass size in field populations. The impact of weather in synchronizing or desynchronizing populations is a factor to be investigated further.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...