ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • CHEMISTRY AND MATERIALS (GENERAL)  (3)
  • Inorganic and Physical Chemistry  (1)
  • 1
    Publication Date: 2019-06-27
    Description: The stability fields of various sulfide phases that form on Fe-Cr, Fe-Ni, Ni-Cr and Fe-Cr-Ni alloys were developed as a function of temperature and the partial pressure of sulfur. The calculated stability fields in the ternary system were displayed on plots of log P sub S sub 2 versus the conjugate extensive variable which provides a better framework for following the sulfidation of Fe-Cr-Ni alloys at high temperatures. Experimental and estimated thermodynamic data were used in developing the sulfur potential diagrams. Current models and correlations were employed to estimate the unknown thermodynamic behavior of solid solutions of sulfides and to supplement the incomplete phase diagram data of geophysical literature. These constructed stability field diagrams were in excellent agreement with the sulfide phases and compositions determined during a sulfidation experiment.
    Keywords: CHEMISTRY AND MATERIALS (GENERAL)
    Type: NASA-TM-78465 , A-7309
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-27
    Description: The stability of chromium sulfate in the temperature range from 880 K to 1040 K was determined by employing a dynamic gas-solid equilibration technique. The solid chromium sulfate was equilibrated in a gas stream of controlled SO3 potential. Thermogravimetric and differential thermal analyses were used to follow the decomposition of chromium sulfate. X-ray diffraction analysis indicated that the decomposition product was crystalline Cr2O3 and that the mutual solubility between Cr2(SO4)3 and Cr2O3 was negligible. Over the temperature range investigated, the decomposition pressure were significantly high so that chromium sulfate is not expected to form on commercial alloys containing chromium when exposed to gaseous environments containing oxygen and sulfur (such as those encountered in coal gasification).
    Keywords: CHEMISTRY AND MATERIALS (GENERAL)
    Type: NASA-TM-78504 , A-7508
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-27
    Description: The sulfidation of 310 stainless steel was studied over the temperature range from 910 K to 1285 K. By adjusting the ratio of hydrogen sulfide, variations in sulfur potential were obtained. The effect of temperature on sulfidation was determined at three different sulfur potentials: 39/sqNm, 0.014/sqNm, and 0.00015/sqNm. All sulfide scales contained one or two surface layers in addition to a subscale. The second outer layer (OL-II), furthest from the alloy, contained primarily Fe-Ni-S. The first outer layer (OL-I), nearest the subscale, contained FE-Cr-S. The subscale consisted of sulfide inclusions in the metal matrix. At a given temperature and sulfur potential, the weight gain data obeyed the parabolic rate law after an initial transient period. The parabolic rate constants obtained at the sulfur potential of 39/sqNm did not show a break when the logarithm of the rate constant was plotted as a function of the inverse of absolute temperature. Sulfidation carried out at sulfur potentials below 0.02/sqNm, however, did show a break at 1145 K, which is termed as the transition temperature. This break was found to be associated with the changes which had occurred in the Fe:Cr ratio of OL-I. Below the transition temperature the activation energy was found to be approximately 125 kj/mole. Above the transition temperature the rate of sulfidation decreased with temperature but dependent on the Fe:Cr ratio in the iron-chromium-sulfide layers of the OL-I. A reaction mechanism consistent with the experimental results has been proposed.
    Keywords: CHEMISTRY AND MATERIALS (GENERAL)
    Type: NASA-TM-73246 , A-7058
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: This paper reports on measurements that demonstrate that oxygen absorbed on clean polycrystalline Fe films can produce an excess current noise. The noise is indicative of dynamic processes occurring in the surface region of the film. We propose that the noise results from the dynamics of a reversible reaction between absorbed states. The measurements are accurately modeled with a single correlation time implying that surface heterogeneity is not important to the reaction. In addition to offering promise for future states of solid-state surface reactions, these measurements also have implications for the origin of 1/f current noise in conductors.
    Keywords: Inorganic and Physical Chemistry
    Type: Journal Vacuum Science Technology (ISSN 0022-5355); 20; 3; 898-899
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...