ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Inorganic Chemistry  (1)
  • 1960-1964  (1)
Collection
Keywords
Publisher
Year
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Zeitschrift für anorganische Chemie 310 (1961), S. 261-285 
    ISSN: 0044-2313
    Keywords: Chemistry ; Inorganic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Description / Table of Contents: UV-absorption spectra of vanadate solutions of different pH and different concentrations have been measured. In metavanadate solutions, trimeric ions are in equilibrium with monomeric ones; this has been calculated from the dependence of the extinction coefficient at 270 mμ and 250 mμ on the concentration of vanadate solutions of pH 7,2. The equilibrium constant has the value \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm K} = \frac{{\left[{{\rm VO}_{\rm 3}^ - \cdot {\rm aq}} \right]^3}}{{\left[{{\rm V}_{\rm 3} {\rm O}_{\rm 9}^{3 -} \cdot {\rm aq}} \right]}} = \left({2,8 \pm 0,1} \right) \cdot 10^{- 6} \left[{\frac{{{\rm mol}^{\rm 2}}}{{{\rm l}^{\rm 2}}}} \right] $$\end{document} Decavandate, too, is in equilibrium with the monomeric ions of vanadic acid and is most stable at pH 4,1. The second dissociation constant of vanadic acid has the value \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm K}_{\rm 2} = \frac{{\left[{{\rm HVO}_{\rm 4}^{\rm 2-}} \right]\left[{{\rm H}^{\rm +}} \right]}}{{\left[{{\rm VO}_{\rm 3}^ - \cdot {\rm aq}} \right]}} = 3,6 \cdot 10^{- 9} \left[{\frac{{{\rm mol}}}{{\rm l}}} \right] $$\end{document} The constants \documentclass{article}\pagestyle{empty}\begin{document}$$ \begin{array}{*{20}c} {{\rm K}_{\rm 0} = \frac{{\left[{{\rm HVO}_{\rm 3}^{} } \right]\left[{{\rm H}^ + } \right]}}{{\left[{{\rm VO}_{\rm 2}^ + } \right]}}} & {{\rm and}} & {{\rm K}_{\rm 1} = \frac{{\left[{{\rm VO}_{\rm 3}^ - } \right]\left[{{\rm H}^ + } \right]}}{{\left[{{\rm HVO}_{\rm 3} } \right]}}}\\\end{array} $$\end{document} can only be estimated approximately. K0 may be between 10-3,5 and 10-4,0; K1 between 10-4,3 and 10-4,8.The contradictions in the literature about the ion size of metavanadate have been explained.The enthalpy of the reaction \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm HV}_{{\rm 10}} {\rm O}_{{\rm 28}}^{{\rm 5 -}} + 2\;{\rm H}_{\rm 2} {\rm O} = 10\;{\rm VO}_{\rm 3}^{\rm -} + 5\;{\rm H}^{\rm +} $$\end{document} is 92 kcal/mol V10.A diagram is suggested which indicates the conditions of pH and concentration, respectively, for the different forms of condensed vanadate ions in aqueous solution.
    Notes: Die UV-Absorptionsspektren von Vanadatlösungen mit verschiedenem pH und verschiedenen Konzentrationen werden gemessen. Aus der Abhängigkeit des Extinktions-koeffizienten bei 270 mμ und 250 mμ von der Konzentration von Vanadatlösungen mit dem pH 7,2 wird berechnet, daß sich in Metavanadatlösungen trimere Ionen im Gleichgewicht mit monomeren Ionen befinden. Die Gleichgewichtskonstante hat einen Wert von \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm K} = \frac{{\left[{{\rm VO}_{\rm 3}^ - \cdot {\rm aq}}\right]^3}}{{\left[{{\rm V}_{\rm 3} {\rm O}_{\rm 9}^{3 -} \cdot{\rm aq}} \right]}} = \left({2,8 \pm 0,1} \right) \cdot 10^{- 6}\left[{\frac{{{\rm Mol}^{\rm 2}}}{{{\rm l}^{\rm 2}}}} \right] $$\end{document} Das Dekavanadat befindet sich ebenfalls mit den monomeren Ionen der Vanadinsäure im Gleichgewicht und ist bei pH 4,1 am stabilsten. Die zweite Dissoziationkonstante der Vanadinsäure hat den Wert \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm K}_{\rm 2} = \frac{{\left[{{\rm HVO}_{\rm 4}^{\rm 2}} \right]\left[{{\rm H}^{\rm +}} \right]}}{{\left[{{\rm VO}_{\rm 3}^ - \cdot {\rm aq}} \right]}} = 3,6 \cdot 10^{- 9} \left[{\frac{{{\rm Mol}}}{{\rm l}}} \right] $$\end{document}. Für die Konstanten \documentclass{article}\pagestyle{empty}\begin{document}$$ \begin{array}{*{20}c} {{\rm K}_{\rm 0} = \frac{{\left[{{\rm HVO}_{\rm 3}^{} } \right]\left[{{\rm H}^ + } \right]}}{{\left[{{\rm VO}_{\rm 2}^ + } \right]}}} & {{\rm und}} & {{\rm K}_{\rm 1} = \frac{{\left[{{\rm VO}_{\rm 3}^ - } \right]\left[{{\rm H}^ + } \right]}}{{\left[{{\rm HVO}_{\rm 3} } \right]}}}\\\end{array} $$\end{document} ist vorerst nur eine grobe Abschätzung möglich. K0 liegt etwa zwischen 10-3,5 und 10-4,0; K1 zwischen 10-4,3 und 10-4,8.Die Widersprüche in den Literaturangaben über die Ionengröße des Metavanadats werden aufgeklärt.Die Reaktionsenthalpie der Reaktion \documentclass{article}\pagestyle{empty}\begin{document}$$ {\rm HV}_{{\rm 10}} {\rm O}_{{\rm 28}}^{{\rm 5 -}} + 2\;{\rm H}_{\rm 2} {\rm O} = 10\;{\rm VO}_{\rm 3}^{\rm -} + 5\;{\rm H}^{\rm +} $$\end{document} beträgt 92 kcal/Mol V10.Es wird ein Vorschlag für ein Zustandsdiagramm der Vanadationen in wäßriger Lösung gemacht.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...