ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Inclusion compounds  (1)
  • stability constants  (1)
  • 1
    ISSN: 0899-0042
    Keywords: chiral recognition ; amino acids ; ternary copper(II) complexes ; stability constants ; EPR ; circular dichroism ; fluorescence ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A modified β-cyclodextrin bearing a 2-aminomethylpyridine binding site for copper(II) (6-deoxy-6-[N-(2-methylamino)pyridine)]-β-cyclodextrin, CDampy was synthesized by C6-monofunctionalization. The acid-base properties of the new ligand in aqueous solution were investigated by potentiometry and calorimetry, and its conformations as a function of pH were studied by NMR and circular dichroism (c.d.). The formation of binary copper(II) complexes was studied by potentiometry, EPR, and c.d. The copper(II) complex was used as chiral selector for the HPLC enantiomeric separation of underivatized aromatic amino acids. Enantioselectivity in the overall stability constants of the ternary complexes with D- or L-Trp was detected by potentiometry, whereas the complexes of the Ala enantiomers did not show any difference in stability. These results were consistent with a preferred cis coordination of the amino group of the ligand and of the amino acid in the ternary complexes (“cis effect”), which leads to the inclusion of the aromatic side chain of D-Trp, but not of that of L-Trp. In Trp-containing ternary complexes, the two enantiomers showed differences in the fluorescence lifetime distribution, consistent with only one conformer of D-Trp and two conformers of L-Trp, and the latter were found to be more accessible to fluorescence quenching by acrylamide and KI. Chirality 9:341-349, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1434-193X
    Keywords: Cyclodextrins ; Inclusion compounds ; Carcinine ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: ---A new modified β-cyclodextrin (β-CD) derivative 1 that was functionalized in position 6 with Boc-Carcinine was synthesised and its crystal structure was determined. The structure reveals a “sleeping swan”-like shape, the covalently bonded Boc-Carcinine moiety forming a folded structure with the Boc group inserted within the hydrophobic cavity of the β-cyclodextrin. The conformation of the Carcinine moiety is determined by the inclusion of the Boc group and is further stabilised by three intramolecular hydrogen bonds, two between the amide N1-H group, the carbonyl C′1=O1 group and a primary hydroxylic group of the glucose unit 5, one between the carbonyl C′0=O0 group and the primary hydroxylic group of the glucose unit 2. The β-CD macrocycle differs only slightly from unmodified β-CDs, maintaining an approximate sevenfold symmetry. The solution structure of the new β-CD derivative was investigated by NMR spectroscopy and circular dichroism (c.d.) spectroscopy. In addition to a complete (1H and 13C) assignment of the pendant Boc-Carcinine group, the NMR study allowed the assignment of all the proton resonances associated with the β-CD macrocycle. Furthermore, NMR and c.d. results indicated that the self-inclusion of the Boc group within the β-CD cavity is retained in aqueous solution. In order to estimate the strength of this self-inclusion complex a series of competition experiments with the external guest 1-adamantanol was carried out using c.d. spectroscopy.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...