ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 91 (1995), S. 421-431 
    ISSN: 1432-2242
    Keywords: Inbreeding ; Selection ; Genetic improvement
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An iterative selection strategy, based on estimated breeding values (EBV) and average relationship among selected individuals, is proposed to optimise the balance between genetic response and inbreeding. Stochastic simulation was used to compare rates of inbreeding and genetic gain with those of other strategies. For a range of heritabilities, population sizes and mating ratios, the iterative strategy, denoted ADJEBV, outperforms other strategies, giving the greatest genetic gain at a given rate of inbreeding and the least breeding at a given genetic gain. Where selection is currently by truncation on the EBV, with a restriction on the number of full-sibs selected, it should be possible to maintain similar levels of genetic gain and inbreeding with a reduction in population size of 10–30%, by changing to the iterative strategy. If performance is measured by the reduction in cumulative inbreeding without losing more than a given amount of genetic gain relative to results obtained under truncation selection on the EBV, then with the EBV based on a family index, the performance of ADJEBV is greater at low heritability, and is generally greater than where EBV are based on individual records. When comparisons of genetic response and inbreeding are made for alternative breeding scheme designs, schemes which give higher genetic gain within acceptable inbreeding levels would usually be favoured. If comparisons are made on this basis, then the selection method used should be ADJEBV, which maximises the genetic gain for a given level of inbreeding. The results indicated that all selection strategies used to reduce inbreeding had very small effects on the variance of gain, and so differences in this respect are unlikely to affect choices among selection strategies. Selection criteria are recommended based on maximising a selection objective which specifies the desired balance between genetic gain and inbreeding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 91 (1995), S. 769-775 
    ISSN: 1432-2242
    Keywords: Inbreeding ; Selection ; Genetic improvement
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Investigations are made of variations in an iterative methodology previously introduced for reducing inbreeding by including genetic relationships in selection decisions, using adjusted estimated breeding values (EBV). An alternative computing strategy for maximising the value of the population selection criterion is shown to involve less computation, which results in function values as great or greater than the original method. Alteration of weights for different types of relationships in the adjusted EBV has no detectable effect on genetic gain at a given level of inbreeding. Selection using the adjusted EBV method in one sex and truncation on EBV in the other sex results in less genetic gain at a given level of inbreeding than using adjusted EBV in both sexes, but results in more gain at a given level of inbreeding than three selection strategies that do not include genetic relationships in selection decisions. The advantage of the adjusted EBV method over these three methods is retained when selection is for a sexlimited trait.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 98 (1999), S. 1156-1162 
    ISSN: 1432-2242
    Keywords: Key words Hybrid selection ; Concurrent backcrossing ; Additive genetic relationship ; Doubled haploids ; Inbreeding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Sugar beet hybrids are produced by crossing a cytoplasmic male-sterile (CMS) line with a pollinator. New CMS lines are produced by crossing a fertile plant to an existing CMS line. The fertile plant is also selfed. In the following generation, one of the selfed, fertile progeny is paired and isolated with one of the crossed, CMS progeny, to give a second generation of selfing and crossing. Over a series of such crosses and selfs, a new fertile inbred line and its corresponding, near-isogenic CMS partner are produced. Selection among lines takes place at one or more stages of the backcrossing programme. A method is presented here for calculating the genetic variances and covariances within and between lines and generations based on a derivation of additive genetic relationships modified from an approach widely employed in animal breeding. The genetic variances and covariances are used to predict response to selection from varying strategies, from which optimum schemes can be determined. Results suggest that selection should generally take place after three generations of backcrossing when the fertile plant used to initiate the backcrossing process is not inbred, but can take place after generation two when the fertile plant is inbred. Doubled haploid production is unlikely to provide an extra advantage that would be worthwhile in such a system. The method developed here can be used to explore a wide range of more complex breeding systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...