ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • In situ oceanic observations  (2)
  • American Meteorological Society  (2)
  • 2015-2019  (2)
  • 1955-1959
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 32 (2015): 412–433, doi:10.1175/JTECH-D-14-00080.1.
    Description: A near-surface specific humidity (Qa) and air temperature (Ta) climatology on daily and 0.25° grids was constructed by the objectively analyzed air–sea fluxes (OAFlux) project by objectively merging two recent satellite-derived high-resolution analyses, the OAFlux existing 1° analysis, and atmospheric reanalyses. The two satellite products include the multi-instrument microwave regression (MIMR) Qa and Ta analysis and the Goddard Satellite-Based Surface Turbulent Fluxes, version 3 (GSSTF3), Qa analysis. This study assesses the degree of improvement made by OAFlux using buoy time series measurements at 137 locations and a global empirical orthogonal function (EOF) analysis. There are a total of 130 855 collocated daily values for Qa and 283 012 collocated daily values for Ta in the buoy evaluation. It is found that OAFlux Qa has a mean difference close to 0 and a root-mean-square (RMS) difference of 0.73 g kg−1, and Ta has a mean difference of −0.03°C and an RMS difference of 0.45°C. OAFlux shows no major systematic bias with respect to buoy measurements over all buoy locations except for the vicinity of the Gulf Stream boundary current, where the RMS difference exceeds 1.8°C in Ta and 1.2 g kg−1 in Qa. The buoy evaluation indicates that OAFlux represents an improvement over MIMR and GSSTF3. The global EOF-based intercomparison analysis indicates that OAFlux has a similar spatial–temporal variability pattern with that of three atmospheric reanalyses including MERRA, NCEP-1, and ERA-Interim, but that it differs from GSSTF3 and the Climate Forecast System Reanalysis (CFSR).
    Description: This study was supported by the NOAA Ocean Climate Observation (OCO) program under Grant NA09OAR4320129.
    Description: 2015-09-01
    Keywords: Data processing ; Databases ; In situ oceanic observations ; Satellite observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 46 (2016): 417-437, doi:10.1175/JPO-D-15-0055.1.
    Description: In the stratified ocean, turbulent mixing is primarily attributed to the breaking of internal waves. As such, internal waves provide a link between large-scale forcing and small-scale mixing. The internal wave field north of the Kerguelen Plateau is characterized using 914 high-resolution hydrographic profiles from novel Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats. Altogether, 46 coherent features are identified in the EM-APEX velocity profiles and interpreted in terms of internal wave kinematics. The large number of internal waves analyzed provides a quantitative framework for characterizing spatial variations in the internal wave field and for resolving generation versus propagation dynamics. Internal waves observed near the Kerguelen Plateau have a mean vertical wavelength of 200 m, a mean horizontal wavelength of 15 km, a mean period of 16 h, and a mean horizontal group velocity of 3 cm s−1. The internal wave characteristics are dependent on regional dynamics, suggesting that different generation mechanisms of internal waves dominate in different dynamical zones. The wave fields in the Subantarctic/Subtropical Front and the Polar Front Zone are influenced by the local small-scale topography and flow strength. The eddy-wave field is influenced by the large-scale flow structure, while the internal wave field in the Subantarctic Zone is controlled by atmospheric forcing. More importantly, the local generation of internal waves not only drives large-scale dissipation in the frontal region but also downstream from the plateau. Some internal waves in the frontal region are advected away from the plateau, contributing to mixing and stratification budgets elsewhere.
    Description: A.M. was supported by the joint CSIRO-University of Tasmania Quantitative Marine Science (QMS) program and the 2009 CSIRO Wealth from Ocean Flagship Collaborative Fund. K.L.P.’s salary support was provided by Woods Hole Oceanographic Institution bridge support funds. B.M.S. was supported by the Australian Climate Change Science Program.
    Description: 2016-06-07
    Keywords: Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Internal waves ; Mixing ; Wave properties ; Observational techniques and algorithms ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...