ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-12-01
    Description: The mammalian target of rapamycin (mTOR) governs cell growth and proliferation by mediating the mitogen- and nutrient-dependent signal transduction that regulates messenger RNA translation. We identified phosphatidic acid (PA) as a critical component of mTOR signaling. In our study, mitogenic stimulation of mammalian cells led to a phospholipase D-dependent accumulation of cellular PA, which was required for activation of mTOR downstream effectors. PA directly interacted with the domain in mTOR that is targeted by rapamycin, and this interaction was positively correlated with mTOR's ability to activate downstream effectors. The involvement of PA in mTOR signaling reveals an important function of this lipid in signal transduction and protein synthesis, as well as a direct link between mTOR and mitogens. Furthermore, these studies suggest a potential mechanism for the in vivo actions of the immunosuppressant rapamycin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fang, Y -- Vilella-Bach, M -- Bachmann, R -- Flanigan, A -- Chen, J -- GM58064/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2001 Nov 30;294(5548):1942-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, B107, Urbana, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11729323" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Butanols/pharmacology ; Carrier Proteins/metabolism ; Cell Line ; Culture Media, Serum-Free ; Enzyme Activation/drug effects ; Humans ; Immunosuppressive Agents/pharmacology ; Mitogens/*pharmacology ; Phosphatidic Acids/*metabolism ; Phosphatidylinositol 3-Kinases/metabolism ; Phospholipase D/metabolism ; Phosphoproteins/metabolism ; Phosphorylation/drug effects ; Protein Binding ; Protein Kinases/chemistry/*metabolism ; Protein Structure, Tertiary ; Ribosomal Protein S6 Kinases/metabolism ; Signal Transduction/*drug effects ; Sirolimus/pharmacology ; TOR Serine-Threonine Kinases ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...