ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geophysics  (1)
  • INSTRUMENTATION AND PHOTOGRAPHY  (1)
  • Space Sciences (General); Lunar and Planetary Science and Exploration  (1)
  • 1
    Publication Date: 2019-01-25
    Description: Two intense microwave spectra lines exist in the martian atmosphere that allow unique sounding capabilities: water vapor at 183 GHz and the (2-1) rotational line of CO at 230 GHz. Microwave spectra line sounding is a well-developed technique for the Earth's atmosphere for sounding from above from spacecraft and airplanes, and from below from fixed surface sites. Two simple instruments for temperature sounding on Mars (the CO line) and water vapor measurements are described. The surface sounder proposed for the MESUR sites is designed to study the boundary layer water vapor distribution and the temperature/pressure profiles with vertical resolution of 0.25 km up to 1 km with reduced resolution above approaching a scale height. The water channel will be sensitive to a few tenths of a micrometer of water and the temperature profile will be retrieved to an accuracy between 1 and 2 K. The latter is routinely done on the Earth using oxygen lines near 60 GHz. The measurements are done with a single-channel heterodyne receiver looking into a 10-cm mirror that is canned through a range of elevation angles plus a target load. The frequency of the receiver is sweep across the water and CO lines generating the two spectra at about 1-hr intervals throughout the mission. The mass and power for the proposed instrument are 2 kg and 5-8 W continuously. The measurements are completely immune to the atmospheric dust and ice particle loads. It was felt that these measurements are the ultimate ones to properly study the martian boundary layer from the surface to a few kilometers. Sounding from above requires an orbiting spacecraft with multichannel microwave spectrometers such as the instrument proposed for MO by a subset of the authors, a putative MESUR orbiter, and a proposed Discovery mission called MOES. Such an instrument can be built with less than 10 kg and use less than 15 W. The obvious advantage of this approach is that the entire atmosphere can be sounded for temperature and water vapor in a few hours with somewhat better than a scale height resolution. If a bigger mirror is used (greater than 30 cm) limb sounding geometry can be employed and half scale height resolution achieved to altitudes up to at least 60 km. Again, the measurements are immune to dust and ice loads. Water vapor sensitivity of 0.1 micrometer can be achieved (even with a nadir instrument) and temperature profiles retrieved to an accuracy of better than 2 K from the surface to about 60 km. Winds can be measured from the doppler shifts of CO lines in the limb sounding mode.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Lunar and Planetary Inst., MSATT Workshop on Innovative Instrumentation for the In Situ Study of Atmosphere-Surface Interactions on Mars; p 14-15
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: Models of the general circulation and climate system of Mars have reached a high level of maturity, but observations to validate them have lacked the kind of global and temporal coverage required. However, we are now on the verge of a new era in Mars exploration as Mars Global Surveyor, and the now enroute Mars Climate Orbiter, will provide daily global coverage of the atmosphere for two Mars years. In the coming years, data from these missions will test the predictions of general circulation models (GCM's) whose results have perhaps become too accepted as truth. This talk will review what GCM's tell us about Mars, what their weaknesses are, and what the latest results imply for their future. Additional information is contained in the original extended abstract.
    Keywords: Geophysics
    Type: The Fifth International Conference on Mars; LPI-Contrib-972
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to todays Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars present day conditions and its implications for future Mars missions.
    Keywords: Space Sciences (General); Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN41536 , Space Science Reviews (ISSN 0038-6308) (e-ISSN 1572-9672); 1-44
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...