ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Escherichia coli  (1)
  • INSTRUMENTATION AND PHOTOGRAPHY  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 183 (1998), S. 125-132 
    ISSN: 1573-4919
    Keywords: fission yeast ; Na+/H+ antiporter ; Escherichia coli ; expression ; lithium resistance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Sod2 is the sodium-proton antiporter on the plasma membrane of the fission yeast Schizosaccharomyces pombe. It is vitally important for sodium export and pH homeostasis in this organism. Recently, the sod2 gene has been cloned and sequenced. However, initial attempts to express sod2 in Escherichia coli using the T7 promoter failed. In the present work we examined physiological consequences of expression of sod2 in E. coli. To alleviate problems caused by expression of sod2 we: (i) used sodium-free media at all steps; (ii) used the moderate tac promoter for expression and; (iii) used E. coli strain MH1 which has impaired sodium exchange. The effect of sod2 expression on E. coli varied depending on the E. coli genotype. When sod2 was expressed in BL21 cells which have normal N a+/H+ antiporters, the result was a Li+ sensitive phenotype. LiCl completely arrested or prevented growth of BL21 E. coli transformed with the sod2 gene. The effect on growth was pronounced in media of low external pH. Sod2 was then expressed in E. coli MH1 which is devoid of endogenous Na+/H+ antiporters. These cells became more resistant to external LiCl, but only in Na+ containing media. In the absence of external Na+, the presence of sod2 reduced growth. The results are explained in a model which demonstrates the physiological consequences of interference by expression of a foreign electroneutral Na+/H+ antiporter in conjunction with different housekeeping systems of E. coli host cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: A cryogenic measurement system capable of performing on-wafer RF testing of semiconductor devices and circuits has been developed. This 'CryoProbe Station' can wafer-probe devices and circuits at cryogenic temperatures, thus eliminating the need for wire bonds. The system operates under vacuum created by a sorption pump. It uses an open cycle cooling system that can be cooled with either liquid nitrogen or liquid helium. Presently, it can reach temperatures, as low as 80 K and 37 K for each of the coolants, respectively. The temperature can be raised using a heater and it is stabilized to within 0.2 K by use of a temperature controller. The CryoProbe Station features a 1 by 2 inch stage that can hold large circuits and calibration standards simultaneously. The system is used with a Hewlett Packard 8510C Automatic Network Analyzer (ANA) to obtain S-parameter data over the frequency range 0.045-26.5 GHz. S-parameter data on HEMT (high electron mobility transistors) devices has been obtained with this station. With the use of DEEMBED software from NIST, detailed transmission line studies have been performed. Although the CryoProbe Station is designed for frequencies up to 26.5 GHz, useful transmission line data has been obtained for frequencies as high as 40 GHz. The CryoProbe station has also been used with the ATN noise figure measurement system to perform automatic, temperature dependent noise figure measurements.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: NASA-TM-106560 , E-8726 , NAS 1.15:106560 , Automated RF Techniques Group Meeting; May 27, 1994; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...