ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-28
    Description: The interaction of atomic particles with surfaces is of both scientific and technological interest. Past work emphasizes the measurement of high-energy sputtering yields. Very little work utilized low-energy beams for which chemical and electronic effects can be important. Even less work has been carried out using well-defined low-energy projectiles. The use of low-energy, reactive projectiles permits one to investigate surface processes that have not been well characterized. As the energy of the projectile decreases, the collisional cascades and spikes, that are common for high-energy projectiles, become less important, and chemical and electronic effects can play a significant role. Aspects of particle-surface interactions are of concern in several areas of technology. For example, the erosion, desorption, and glow of surfaces of spacecraft in orbit are important in the arena of space technology. The materials studied under this contract are of possible use on the exterior portions of the power generation system of Space Station Freedom. Under the original designs, Space Station Freedom's power generation system would generate potential differences on the surface as high as 200 volts. Ions in the plasma that often surround orbiting vehicles would be accelerated by these potentials leading to bombardment and erosion of the exposed surfaces. The major constituent of the atmosphere, approximately 90 percent, in the low earth orbit region is atomic oxygen. Since atomic oxygen is extremely reactive with most materials, chemical effects can arise in addition to the physical sputtering caused by the acceleration of the oxygen ions. Furthermore, the incident oxygen ions can remain embedded in the exposed surfaces, altering the chemical composition of the surfaces. Since the effective binding energy of a chemically altered surface can be quite different from that of the pure substrate, the sputtering yield of a chemically altered surface is usually different also. The low-energy O+ sputtering yield measurements, reported here, will help quantify the erosion rates for materials exposed to the low-earth orbit environment. These measurements are of technological importance in another respect. In most surface analysis techniques, a surface is bombarded with ions, electrons or photons. Information concerning the structure of the surface and near-surface bulk, abundance of impurities and defects, as well as other surface properties are obtained either from the desorbed species or from the scattered projectiles. Because of their low penetration depth, low-energy ions provide an advantage over other techniques because they provide information that is more indicative of conditions on the surface rather than integrated effects arising from deeper in the bulk. A better understanding of the microscopic processes involved in these interactions is not only of basic scientific interest, but will also aid the scientific community by increasing the accuracy and usefulness of these surface analysis techniques.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: NASA-CR-193851 , NAS 1.26:193851
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: The optical emission attributed to electronically desorbed excited sodium atoms from NaCl and Na-evaporated surfaces is shown to be enhanced by exposure of the surface to gaseous CO2 and N2. This is the first observation of enhancement of electron-simulated desorption of substrate atoms caused by the exposure of surfaces to gaseous molecules which do not contain the desorbed atoms. The large amount of excited-sodium yield at 60 K provides evidence for nonexistence of the secondary-electron excitation of thermally desorbed ground sodium.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: Applied Physics Letters (ISSN 0003-6951); 60; 1396-139
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Measurements of the optical spectra of surfaces undergoing bombardment by N2 and N2(+) in an ultrahigh vacuum environment provide information related to the origin of spacecraft flow and erosion. This work is complementary to other measurements, in which O and O(+) beams are utilized. These efforts are part of a broad program whose goal is the understanding of interactions between surfaces and low-energy charged and neutral particles.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: Optical System Contamination: Effects, Measurement, Control II; Jul 10, 1990 - Jul 12, 1990; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...