ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PHYSICS, ATOMIC, MOLECULAR, AND NUCLEAR  (4)
  • INORGANIC AND PHYSICAL CHEMISTRY  (2)
  • 1
    Publication Date: 2019-01-25
    Description: The Antarctic meteorite LEW88516 has been classified as a member of the SNC group of meteorites, specifically a shergottite. It is reported to be remarkably similar in mineralogy, petrogenesis and chemistry to the previously known ALH77005 shergottite, with both being compositionally distinct from other shergottites. LEW88516 shows pervasive shock features and has been found to contain glass veins attributable to a shock origin. In an effort to determine whether the glass in LEW88516 contains any of the isotopically-heavy trapped nitrogen component observed in EETA 79001 glass, as well as the related high-Ar-40/Ar-36 and high-Xe-129/Xe-132 components, we undertook an analysis of an 11.9 mg glass sample (LEW88516,4) provided to us by H. Y. McSween, Jr. as part of a consortium study of this meteorite. Nitrogen and noble gases were extracted from LEW88516,4 in a series of combustion steps at increasing temperatures followed by a final pyrolysis. Initial steps at 550 C were intended to remove any surface-sited nitrogen-containing contaminants, while the 700 C step was expected to show the onset of release of a trapped argon component, based on our previous data for EETA 79001. It was hoped that the bulk of any trapped gas release would be concentrated in one of two steps at 1100 C and approximately 1400 C, maximizing our analytical sensitivity. Results of the analysis are shown. Except for He and Ne, data obtained for the 550 C steps will be omitted from further consideration on the assumption that they represent terrestrial contamination.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: Lunar and Planetary Inst., Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F; p 77-78
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-27
    Description: H Atoms have been created by the photolysis of H2S. These then initiated reactions in mixtures involving acetylene-ammonia-water and ethylene-ammonia-water. In the case of the acetylene system, the products consisted of two amino acids, ethylene and a group of primarily cyclic thio-compounds, but no free sulfur. In the case of the ethylene systems, seven amino acids, including an aromatic one, ethane, free sulfur, and a group of solely linear thio-compounds were produced. Total quantum yields for the production of amino acids were about 3 x 10 to the -5th and about 2 x 10 to the -4th with ethylene and acetylene respectively as carbon substrates. Consideration is given of the mechanism for the formation of some of the products and implications regarding planetary atmosphere chemistry, particularly that of Jupiter, are explored.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: Journal of Molecular Evolution; 13; June 8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-27
    Description: The renormalized Brueckner-Hartree-Fock (RBHF) theory for many-body nuclear systems has been generalized to permit calculations for intrinsic states having permanent deformation. Both Hartree-Fock and Brueckner self-consistencies are satisfied, and details of the numerical techniques are discussed. The Hamada-Johnston interaction is used in a study of deformations, binding, size, and separation energies for several nuclei. Electromagnetic transition rates, moments, and electron scattering form factors are calculated using nuclear wave functions obtained by angular momentum projection. Comparison is made to experiment as well as to predictions of ordinary and density-dependent Hartree-Fock theory.
    Keywords: PHYSICS, ATOMIC, MOLECULAR, AND NUCLEAR
    Type: Symposium on Present Status and Novel Developments in the Many-Body Problem; Sept. 19-23, 1972; Rome; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-27
    Description: The Brueckner-Hartree-Fock (BHF) method has been applied to nuclei whose intrinsic structure is nonspherical. Reaction matrix elements were calculated as functions of starting energy for the Hamada-Johnston interaction using the Pauli operator appropriate to O-16 and a shifted oscillator spectrum for virtual excited states. Binding energies, single particle energies, radii, and shape deformations of the intrinsic state, in ordinary as well as renormalized BHF, are discussed and compared with previous HF studies and with experiment when possible. Results are presented for C-12, 0-16 and Ne-20. It is found that the binding energies and radii are too small, but that separation energies are well reproduced when the renormalized theory is used.
    Keywords: PHYSICS, ATOMIC, MOLECULAR, AND NUCLEAR
    Type: NASA-TN-D-6834 , E-6836
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The renormalized Brueckner-Hartree-Fock (RBHF) theory for many-body nuclear systems is generalized to permit calculations for intrinsic states having permanent deformation. Both Hartree-Fock and Brueckner self-consistencies are satisfied, and details of the numerical techniques are discussed. The Hamada-Johnston interaction is used in a study of deformations, binding, size, and separation energies for several nuclei. Electromagnetic transition rates, moments, and electron scattering form factors are calculated using nuclear wave functions obtained by angular momentum projection. Comparison is made to experiment as well as to predictions of ordinary and density-dependent Hartree-Fock Theory.
    Keywords: PHYSICS, ATOMIC, MOLECULAR, AND NUCLEAR
    Type: NASA-TM-X-68134 , Symp. on Present Status and Novel Develop. in the Many Body Probl.; Sep 19, 1972 - Sep 23, 1972; Rome
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: For the first time the Brueckner-Hartree-Fock (BHF) method was applied to nuclei whose intrinsic structure is nonspherical. One aim was to investigate whether the energy dependent reaction matrix calculated from a realistic nucleon-nucleon interaction leads to deformations similar to, or different from, those obtained from energy independent interactions in Hartree-Fock (HF) calculations. Reaction matrix elements were calculated as a function of starting energy for the Hamada-Johnston interaction, using a Pauli operator appropriate to O-16 and a shifted oscillator spectrum for virtual excited states. Binding energies, single-particle energies, radii, and shape deformations of the intrinsic state in unrenormalized as well as renormalized BHF are discussed and compared with previous HF studies. Results are presented for C-12, O-16, and Ne-20.
    Keywords: PHYSICS, ATOMIC, MOLECULAR, AND NUCLEAR
    Type: NASA-TM-X-67972 , E-5503 , Am. Phys. Soc. Meeting; Nov 04, 1971 - Nov 06, 1971; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...