ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-1561
    Keywords: Chemosensory cues ; olfaction ; kin recognition ; honeybees ; Apis mellifera ; Hymenoptera ; Apidae ; differential conditioning ; proboscis extension reflex ; learning
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Differential training of honeybee workers using the proboscis extension reflex is applied to the problem of evaluating compounds that may potentially provide cues for kin recognition in the honeybeeApis mellifera. These cues were obtained by contaminating glass rods and steel needles with different materials found in the hive. In particular it is shown that workers discriminate between: cuticular waxes from different adult workers; eggs from the same and different hives; similar aged larvae within the same hive; and needles contaminated with the Nasonov gland secretions of different adult workers. It appears that some of these differences are due to phenotypic variation among individuals that cannot be directly attributed to environmental factors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-8477
    Keywords: Evolutionarily stable strategy ; risk-spreading ; dispersal behavior ; flight muscle histolysis ; waterstrider
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Evolutionary stable dispersal and wing muscle histolysis strategies are studied in the waterstriderGerris thoracicus. These strategies relate to spreading reproductive risk. Overwintering individuals have the choice of dispersing to either a brackish sea bay or a rock pool habitat. The former is reproductively more favorable than the latter during warm dry years and less favorable during cool wet years. After spring migration, individuals may histolyse their flight muscles and lay all their eggs in one pool or they may retain their flight ability and lay fewer eggs in total but spread them in several pools. We use a simple two-habitat model to examine the question of habitat dispersal. Our results indicate that, although the value of the evolutionary stable dispersal depends on the degree of variability in the environment and on the probability of local extinctions in either habitat, the population always disperses to both habitats as a consequence of density dependent growth. We use a more detailed multiple-rockpool habitat model to examine the question of wing muscle histolysis as a response to density dependence. Our results indicate that a wing muscle histolysis response to population density is an evolutionarily stable strategy when compared with the two alternatives of females always histolysing or never histolysing their flight muscles. The application of evolutionarily stable theory to stochastic problems presents a number of difficulties. We discuss these difficulties in the context of computing evolutionarily stable strategies for the problems at hand.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Evolutionary ecology 6 (1992), S. 312-330 
    ISSN: 1573-8477
    Keywords: genetic models ; inbreeding depression ; mating cost ; Hymenoptera
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Existing genetic models of the evolution of sibmating behaviour in diploids incorporate inbreeding depression in terms of reduced fecundity of consanguineous mating pairs rather than reduced survival or fecundity of the progeny of such matings. Here we derive a model to correct this deficiency and extend the model to haplodiploids where differential effects of inbreeding in males and females is a crucial consideration. Our analyses indicate that sibmating can readily evolve in both diploids and haplodiploids in which male mating costs and inbreeding depression are reasonably low, provided there is some mechanism to permit sibmating such as siblings being reared in nests or other forms of aggregation. Our analyses also indicate that once sibmating invades, it typically will go to fixation, although sib-/randommating polymorphisms can persist in both diploids and haplodiploids if male mating costs are close to zero and inbreeding depression reduces survival by around one-third. The conditions favouring sibmating are slightly more restrictive in haplodiploids than in diploids. In light of this we may ask why we see intense sibmating in many haplodiploids such as parasitic wasps, fig wasps, ants, bark beetles and mites, and only rarely in diploid animals. The common factor could be certain kinds of aggregation behaviour that are a prerequisite for sibmating in the absence of kin recognition. Another possibility is that inbreeding depression is likely to be more severe in diploids than in haplodiploids because deleterious recessives are purged from haplodiploid populations when expressed by haploid males. Thus, lower levels of inbreeding depression might be one important reason why sibmating appears to arise more frequently in haplodiploids than diploids. Phylogenetic analysis of groups, such as bark beetles and mites, exhibiting both diploid and haplodiploid populations may be useful in elucidating the relative importance of gregarious behaviour and haplodiploidy in facilitating sibmating systems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...