ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Hydrothermal systems  (1)
  • Submarine geology  (1)
Collection
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2010
    Description: This thesis presents the results of four discrete investigations into processes governing the organic and inorganic chemical composition of seafloor hydrothermal fluids in a variety of geologic settings. Though Chapters 2 through 5 of this thesis are disparate in focus, each represents a novel investigation aimed at furthering our understanding of subsurface geochemical processes affecting hydrothermal fluid compositions. Chapters 2 and 3 concern the abiotic (nonbiological) formation of organic compounds in high temperature vent fluids, a process which has direct implications for the emergence of life in early Earth settings and sustainment of present day microbial populations in hydrothermal environments. Chapter 2 represents an experimental investigation of methane (CH4) formation under hydrothermal conditions. The overall reduction of carbon dioxide (CO2) to CH4, previously assumed to be kinetically inhibited in the absence of mineral catalysts, is shown to proceed on timescales pertinent to crustal residence times of hydrothermal fluids. In Chapter 3, the abundance of methanethiol (CH3SH), considered to be a crucial precursor for the emergence of primitive chemoautotrophic life, is characterized in vent fluids from ultramafic-, basalt- and sediment-hosted hydrothermal systems. Previous assumptions that CH3SH forms by reduction of CO2 are not supported by the observed distribution in natural systems. Chapter 4 investigates factors regulating the hydrogen isotope composition of hydrocarbons under hydrothermal conditions. Isotopic exchange between low molecular weight n-alkanes and water is shown to be facilitated by metastable equilibrium reactions between alkanes and their corresponding alkenes, which are feasible in natural systems. In Chapter 5, the controls on vent fluid composition in a backarc hydrothermal system are investigated. A comprehensive survey of the inorganic geochemistry of fluids from sites of hydrothermal activity in the eastern Manus Basin indicates that fluids there are influenced by input of acidic magmatic solutions at depth, and subsequently modified by variable extents of seawater entrainment and mixing-related secondary acidity production.
    Description: The thesis research presented here was funded by the National Science Foundation through grants OCE-0327448, OCE-0136954, MCB-0702677, OCE-0549829, and by the Department of Energy grant DE-FG02-97ER14746.
    Keywords: Hydrothermal circulation ; Submarine geology
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of National Academy of Sciences for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 111 (2014): 5474-5479, doi:10.1073/pnas.1400643111.
    Description: Simple alkyl thiols such as methanethiol (CH3SH) are widely speculated to form in seafloor hot spring fluids. Putative CH3SH synthesis by abiotic (non-biological) reduction of inorganic carbon (CO2 or CO) has been invoked as an initiation reaction for the emergence of proto-metabolism and microbial life in primordial hydrothermal settings. Thiols are also presumptive ligands for hydrothermal trace metals and potential fuels for associated microbial communities. In an effort to constrain sources and sinks of CH3SH in seafloor hydrothermal systems, we determined for the first time its abundance in diverse hydrothermal fluids emanating from ultramafic, mafic and sediment-covered mid-ocean ridge settings. Our data demonstrate that the distribution of CH3SH is inconsistent with metastable equilibrium with inorganic carbon, indicating production by abiotic carbon reduction is more limited than previously proposed. CH3SH concentrations are uniformly low (~10-8 M) in high-temperature fluids (〉200°C) from all unsedimented systems, and in many cases suggestive of metastable equilibrium with CH4 instead. Associated low-temperature fluids (〈200°C) formed by admixing of seawater, however, are invariably enriched in CH3SH (up to ~10-6 M) along with NH4+ and low molecular weight hydrocarbons relative to high-temperature source fluids, resembling our observations from a sedimented system. This strongly implicates thermogenic interactions between upwelling fluids and microbial biomass or associated dissolved organic matter during subsurface mixing in crustal aquifers. Widespread thermal degradation of subsurface organic matter may be an important source of organic production in unsedimented hydrothermal systems, and may influence microbial metabolic strategies in cooler near-seafloor and plume habitats.
    Description: 2014-09-27
    Keywords: Methanethiol ; Hydrothermal systems ; Biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...