ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2234
    Keywords: Mutually consistent field calculations ; solvation energies ; glycine-water-system
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract We have performed calculations of the glycine zwitterion surrounded by water molecules with the help of the mutually consistent field (MCF) method and perturbation theoretical expressions. Two different models for the hydration shell have been chosen, the glycine·6H2O and glycine·12H2O complexes, representing the most probable first and second solvation shell, respectively. To calculate the exchange and charge transfer energy contributions we have applied approximative expressions derived from perturbation theory for weakly overlapping subunits. For the sake of comparison we also calculated the interaction energy in the supermolecule approach for the smaller of the two solvation complexes. Furthermore, we have investigated the part of the potential energy surface which is determined by varying the lengths of the hydrogen bonds between glycine and water in the complex glycine·12H2O using the electrostatic approach. The exchange energy contribution to the interaction energy for different points on the surface was approximated with the help of an analytical expression fitted to three directly calculated points. For the charge transfer energy a polynomial expansion of second order was established on the basis of five values, computed with the aid of the perturbation theoretical expression. To get a more detailed insight in the relatively strong hydrogen bonds between the water molecules and the ionic hydrophilic parts of glycineab initio model studies on NH 4 + ·3H2O and HCOO−·3H2O systems are reported.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2234
    Keywords: (HF)n-chains ; (H2O)n-chains ; Hydrogen bond energies
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Energy band structures of one-dimensional (HF)n- and (H2O)n-chains have been calculated (1) by extrapolation of CNDO/2-MO levels to infinite chain length and (2) by the CNDO/2 crystal orbital (CO) method. In the CO-calculations interactions up to fifth neighbours have been taken into account. Both types of calculations were performed using experimental geometries and CNDO/2 minimum geometries of the corresponding dimers (HF)2 and (H2O)2. With the same geometries CO calculations on two-dimensional sheets of hydrogen bonded chains were performed too. Due to end-effects the extrapolated MO bands are much broader than the bands obtained by the CO method. In the CO calculations further neighbour interactions play a non-negligible role and hence the nearest neighbour approximation is not sufficient for an accurate description of crystals containing hydrogen bonds. MO calculations on one-dimensional chains of both systems show that the hydrogen bond energies increase with the number of monomers indicating the presence of cooperative effects. The hydrogen bond energies calculated with the CO method are usually somewhat larger than those extrapolated from the MO results. In three-dimensional networks of (H2O)n, however, the additional stabilization of clusters with respect to dimers is drastically diminished.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2234
    Keywords: Mutually consistent field calculations ; solvation energies ; glycine-water-system
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract We have performed calculations of the glycine zwitterion surrounded by water molecules with the help of the mutually consistent field (MCF) method and perturbation theoretical expressions. Two different models for the hydration shell have been chosen, the glycine·6H2O and glycine·12H2O complexes, representing the most probable first and second solvation shell, respectively. To calculate the exchange and charge transfer energy contributions we have applied approximative expressions derived from perturbation theory for weakly overlapping subunits. For the sake of comparison we also calculated the interaction energy in the supermolecule approach for the smaller of the two solvation complexes. Furthermore, we have investigated the part of the potential energy surface which is determined by varying the lengths of the hydrogen bonds between glycine and water in the complex glycine·12H2O using the electrostatic approach. The exchange energy contribution to the interaction energy for different points on the surface was approximated with the help of an analytical expression fitted to three directly calculated points. For the charge transfer energy a polynomial expansion of second order was established on the basis of five values, computed with the aid of the perturbation theoretical expression. To get a more detailed insight in the relatively strong hydrogen bonds between the water molecules and the ionic hydrophilic parts of glycineab initio model studies on NH 4 + ·3H2O and HCOO−·3H2O systems are reported.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...