ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1)
  • Hydride protonation  (1)
Collection
  • Articles  (1)
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Berichte der deutschen chemischen Gesellschaft 2000 (2000), S. 993-1000 
    ISSN: 1434-1948
    Keywords: Ruthenium ; Dihydrogen complexes ; Dihydrogen bonding ; Hydride protonation ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: in CD2Cl2 yielded, in a straightforward manner, the dicationic η2-dihydrogen complex [tpmRu(PPh3)2(H2)](BF4)2, which, as expected, is more acidic than its monocationic Tp [Tp = hydrotris(pyrazolyl)borate] analog [TpRu(PPh3)2(H2)]BF4 (pKa: 2.8 vs. 7.6). The complex [tpmRu(PPh3)2(H2)](BF4)2 is unstable towards H2 loss at ambient temperature. However, acidification of [tpmRu(PPh3)2H]BF4 with excess aqueous HBF4 or aqueous triflic acid in [D8]THF gave very interesting results. Variable-temperature 1H- and 31P-NMR studies revealed that the aqueous acid did not fully protonate the metal hydride to form the dihydrogen complex, but a hydrogen-bonded species was obtained. The feature of this species is that the strength of its Ru-H···H-(H2O)m interaction decreases with temperature; this phenomenon is unusual because other complexes containing dihydrogen bonds show enhanced M-H···H-X interaction as the temperature is lowered. Decrease of the dihydrogen-bond strength with temperature in the present case can be attributed to the decline of acidity that results from the formation of larger H+(H2O)n (n 〉 m) clusters at lower temperatures; steric hindrance of these large clusters also contribute to the weakening of the dihydrogen bonding interactions. At higher temperatures, facile H/H exchange occurs in Ru-H···H-(H2O)m via the intermediacy of a “hydrogen-bonded dihydrogen complex” Ru-(H2)···(H2O)m. To investigate the effect of the H+(H2O)m cluster size on the strength of the dihydrogen bonding in [tpmRu(PPh3)2H]+, molecular orbital calculations at the B3LYP level have been performed on model systems, [tpmRu(PH3)2H]+ + H+(H2O) and [tpmRu(PH3)2H]+ + H+(H2O)2. The results provide further support to the notion that the formation of larger H+(H2O)n clusters weakens the Ru-H····H(H2O)n dihydrogen bonding interaction.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...