ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Humans
Collection
Keywords
Years
  • 1
    Publication Date: 2008-04-11
    Description: Clathrin-coated vesicles are vehicles for intracellular trafficking in all nucleated cells, from yeasts to humans. Many studies have demonstrated their essential roles in endocytosis and cellular signalling processes at the plasma membrane. By contrast, very few of their non-endocytic trafficking roles are known, the best characterized being the transport of hydrolases from the Golgi complex to the lysosome. Here we show that clathrin is required for polarity of the basolateral plasma membrane proteins in the epithelial cell line MDCK. Clathrin knockdown depolarized most basolateral proteins, by interfering with their biosynthetic delivery and recycling, but did not affect the polarity of apical proteins. Quantitative live imaging showed that chronic and acute clathrin knockdown selectively slowed down the exit of basolateral proteins from the Golgi complex, and promoted their mis-sorting into apical carrier vesicles. Our results demonstrate a broad requirement for clathrin in basolateral protein trafficking in epithelial cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4078870/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4078870/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deborde, Sylvie -- Perret, Emilie -- Gravotta, Diego -- Deora, Ami -- Salvarezza, Susana -- Schreiner, Ryan -- Rodriguez-Boulan, Enrique -- R01 EY008538/EY/NEI NIH HHS/ -- R01 GM034107/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 Apr 10;452(7188):719-23. doi: 10.1038/nature06828.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ophthalmology, Dyson Vision Research Institute, LC-300, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18401403" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cathepsin D/metabolism ; Cell Line ; *Cell Polarity ; Clathrin/deficiency/genetics/*metabolism ; Clathrin Heavy Chains/genetics/metabolism ; Dogs ; Epithelial Cells/*cytology/metabolism ; Golgi Apparatus/metabolism ; Humans ; Inulin/metabolism ; Lysosomes/metabolism ; Protein Transport ; Receptors, LDL/metabolism ; Receptors, Transferrin/metabolism ; Tight Junctions/metabolism ; Time Factors ; trans-Golgi Network/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-05-24
    Description: Targeted protein degradation is largely performed by the ubiquitin-proteasome pathway, in which substrate proteins are marked by covalently attached ubiquitin chains that mediate recognition by the proteasome. It is currently unclear how the proteasome recognizes its substrates, as the only established ubiquitin receptor intrinsic to the proteasome is Rpn10/S5a (ref. 1), which is not essential for ubiquitin-mediated protein degradation in budding yeast. In the accompanying manuscript we report that Rpn13 (refs 3-7), a component of the nine-subunit proteasome base, functions as a ubiquitin receptor, complementing its known role in docking de-ubiquitinating enzyme Uch37/UCHL5 (refs 4-6) to the proteasome. Here we merge crystallography and NMR data to describe the ubiquitin-binding mechanism of Rpn13. We determine the structure of Rpn13 alone and complexed with ubiquitin. The co-complex reveals a novel ubiquitin-binding mode in which loops rather than secondary structural elements are used to capture ubiquitin. Further support for the role of Rpn13 as a proteasomal ubiquitin receptor is demonstrated by its ability to bind ubiquitin and proteasome subunit Rpn2/S1 simultaneously. Finally, we provide a model structure of Rpn13 complexed to diubiquitin, which provides insights into how Rpn13 as a ubiquitin receptor is coupled to substrate deubiquitination by Uch37.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2825158/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2825158/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schreiner, Patrick -- Chen, Xiang -- Husnjak, Koraljka -- Randles, Leah -- Zhang, Naixia -- Elsasser, Suzanne -- Finley, Daniel -- Dikic, Ivan -- Walters, Kylie J -- Groll, Michael -- CA097004/CA/NCI NIH HHS/ -- GM008700/GM/NIGMS NIH HHS/ -- GM43601/GM/NIGMS NIH HHS/ -- R01 CA097004/CA/NCI NIH HHS/ -- R01 CA097004-05/CA/NCI NIH HHS/ -- R01 CA097004-06A1/CA/NCI NIH HHS/ -- R37 GM043601/GM/NIGMS NIH HHS/ -- R37 GM043601-17/GM/NIGMS NIH HHS/ -- T32 GM008700/GM/NIGMS NIH HHS/ -- T32 GM008700-09/GM/NIGMS NIH HHS/ -- England -- Nature. 2008 May 22;453(7194):548-52. doi: 10.1038/nature06924.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Integrated Protein Science at the Department Chemie, Lehrstuhl fur Biochemie, Technische Universitat Munchen, Lichtenbergstrasse 4, D-85747 Garching, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18497827" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Cell Adhesion Molecules/*chemistry/genetics/*metabolism ; Crystallography, X-Ray ; Humans ; Membrane Glycoproteins/chemistry/genetics/metabolism ; Mice ; Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Proteasome Endopeptidase Complex/*chemistry/*metabolism ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry/genetics/metabolism ; Ubiquitin/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-06-20
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Allred, S Colby -- Schreiner, William J -- Smithies, Oliver -- R01 HL049277/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Jun 19;510(7505):340. doi: 10.1038/510340e.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24943948" target="_blank"〉PubMed〈/a〉
    Keywords: *Color Vision Defects ; Humans ; Internet ; Periodicals as Topic/*standards/statistics & numerical data
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1996-01-05
    Description: A speech processing algorithm was developed to create more salient versions of the rapidly changing elements in the acoustic waveform of speech that have been shown to be deficiently processed by language-learning impaired (LLI) children. LLI children received extensive daily training, over a 4-week period, with listening exercises in which all speech was translated into this synthetic form. They also received daily training with computer "games" designed to adaptively drive improvements in temporal processing thresholds. Significant improvements in speech discrimination and language comprehension abilities were demonstrated in two independent groups of LLI children.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tallal, P -- Miller, S L -- Bedi, G -- Byma, G -- Wang, X -- Nagarajan, S S -- Schreiner, C -- Jenkins, W M -- Merzenich, M M -- New York, N.Y. -- Science. 1996 Jan 5;271(5245):81-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8539604" target="_blank"〉PubMed〈/a〉
    Keywords: Algorithms ; Child ; Child, Preschool ; Female ; Humans ; Language Disorders/*therapy ; *Language Therapy ; Learning Disorders/*therapy ; Male ; *Software ; Speech Perception ; *Video Games
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-01-05
    Description: Children with language-based learning impairments (LLIs) have major deficits in their recognition of some rapidly successive phonetic elements and nonspeech sound stimuli. In the current study, LLI children were engaged in adaptive training exercises mounted as computer "games" designed to drive improvements in their "temporal processing" skills. With 8 to 16 hours of training during a 20-day period, LLI children improved markedly in their abilities to recognize brief and fast sequences of nonspeech and speech stimuli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Merzenich, M M -- Jenkins, W M -- Johnston, P -- Schreiner, C -- Miller, S L -- Tallal, P -- New York, N.Y. -- Science. 1996 Jan 5;271(5245):77-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉W. M. Keck Center for Integrative Neurosciences, University of California, San Francisco 94143-0732, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8539603" target="_blank"〉PubMed〈/a〉
    Keywords: Child ; Child, Preschool ; Female ; Humans ; Language Disorders/*therapy ; *Language Therapy ; Learning Disorders/*therapy ; Male ; *Software ; Speech Perception ; *Video Games
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...