ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-09-18
    Description: Long-term potentiation of synaptic transmission in the hippocampus is the leading experimental model for the synaptic changes that may underlie learning and memory. This review presents a current understanding of the molecular mechanisms of this long-lasting increase in synaptic strength and describes a simple model that unifies much of the data that previously were viewed as contradictory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Malenka, R C -- Nicoll, R A -- New York, N.Y. -- Science. 1999 Sep 17;285(5435):1870-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Nancy Friend Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA. malenka@stanford.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10489359" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium Signaling ; Hippocampus/*physiology ; Humans ; Long-Term Potentiation/*physiology ; Models, Neurological ; Protein Kinases/metabolism ; Pyramidal Cells/physiology ; Receptors, AMPA/metabolism ; Receptors, N-Methyl-D-Aspartate/physiology ; Synapses/*physiology ; Synaptic Transmission/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-03-06
    Description: Activity-dependent plasticity in the brain arises in part from changes in the number of synaptic AMPA receptors. Synaptic trafficking of AMPA receptors is controlled by stargazin and homologous transmembrane AMPA receptor regulatory proteins (TARPs). We found that TARPs were stable at the plasma membrane, whereas AMPA receptors were internalized in a glutamate-regulated manner. Interaction with AMPA receptors involved both extra- and intracellular determinants of TARPs. Upon binding to glutamate, AMPA receptors detached from TARPs. This did not require ion flux or intracellular second messengers. This allosteric mechanism for AMPA receptor dissociation from TARPs may participate in glutamate-mediated internalization of receptors in synaptic plasticity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tomita, Susumu -- Fukata, Masaki -- Nicoll, Roger A -- Bredt, David S -- New York, N.Y. -- Science. 2004 Mar 5;303(5663):1508-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, University of California, San Francisco, San Francisco, CA 94143-2140, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15001777" target="_blank"〉PubMed〈/a〉
    Keywords: 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology ; Animals ; Calcium Channels/analysis/*metabolism ; Cell Line ; Cells, Cultured ; Cerebral Cortex/chemistry/cytology ; Endocytosis ; Glutamic Acid/metabolism/pharmacology ; Humans ; Neuronal Plasticity ; Protein Binding ; Protein Structure, Tertiary ; Rats ; Receptors, AMPA/agonists/antagonists & inhibitors/*metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; Recombinant Fusion Proteins/metabolism ; Synapses/*metabolism ; Xenopus laevis ; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-04-27
    Description: The primary psychoactive ingredient in cannabis, Delta9-tetrahydrocannabinol (Delta9-THC), affects the brain mainly by activating a specific receptor (CB1). CB1 is expressed at high levels in many brain regions, and several endogenous brain lipids have been identified as CB1 ligands. In contrast to classical neurotransmitters, endogenous cannabinoids can function as retrograde synaptic messengers: They are released from postsynaptic neurons and travel backward across synapses, activating CB1 on presynaptic axons and suppressing neurotransmitter release. Cannabinoids may affect memory, cognition, and pain perception by means of this cellular mechanism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, Rachel I -- Nicoll, Roger A -- New York, N.Y. -- Science. 2002 Apr 26;296(5568):678-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, 139-74, California Institute of Technology, Pasadena, CA 91125, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11976437" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/metabolism ; Brain/*metabolism ; Cannabinoid Receptor Modulators ; Cannabinoids/*metabolism ; Endocannabinoids ; Humans ; Mental Processes ; Mice ; Neurons/*metabolism ; Neurotransmitter Agents/metabolism ; Pain ; Receptors, Cannabinoid ; Receptors, Drug/*metabolism ; *Signal Transduction ; Synapses/*metabolism ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-09-23
    Description: Abnormally synchronized synaptic transmission in the brain causes epilepsy. Most inherited forms of epilepsy result from mutations in ion channels. However, one form of epilepsy, autosomal dominant partial epilepsy with auditory features (ADPEAF), is characterized by mutations in a secreted neuronal protein, LGI1. We show that ADAM22, a transmembrane protein that when mutated itself causes seizure, serves as a receptor for LGI1. LGI1 enhances AMPA receptor-mediated synaptic transmission in hippocampal slices. The mutated form of LGI1 fails to bind to ADAM22. ADAM22 is anchored to the postsynaptic density by cytoskeletal scaffolds containing stargazin. These studies in rat brain indicate possible avenues for understanding human epilepsy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fukata, Yuko -- Adesnik, Hillel -- Iwanaga, Tsuyoshi -- Bredt, David S -- Nicoll, Roger A -- Fukata, Masaki -- New York, N.Y. -- Science. 2006 Sep 22;313(5794):1792-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genomics and Proteomics, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8522, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16990550" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins/chemistry/genetics/*metabolism ; Animals ; Calcium Channels/metabolism ; Cell Line ; Cerebellar Cortex/metabolism ; Cerebral Cortex/metabolism ; Epilepsies, Partial/physiopathology ; Hippocampus/metabolism/*physiology ; Humans ; Intracellular Signaling Peptides and Proteins/metabolism ; Ligands ; Membrane Proteins/metabolism ; Mice ; N-Methylaspartate/metabolism ; Nerve Tissue Proteins/genetics/metabolism ; Protein Binding ; Protein Structure, Tertiary ; Proteins/*metabolism ; Rats ; Receptors, AMPA/*metabolism ; Recombinant Fusion Proteins/metabolism ; Synapses/metabolism ; *Synaptic Transmission ; Transfection ; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-11-03
    Description: Quinoxalinedione compounds such as 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) are the most commonly used alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists. However, we find that in the presence of transmembrane AMPA receptor regulatory proteins (TARPs), which are AMPA receptor auxiliary subunits, CNQX acts as a partial agonist. CNQX induced small depolarizing currents in neurons of the central nervous system, and reconstitution of this agonist activity required coexpression of TARPs. A crystal structure of CNQX bound to the TARP-less AMPA receptor ligand-binding domain showed that, although CNQX induces partial domain closure, this movement is not transduced into linker separation, suggesting that TARPs may increase agonist efficacy by strengthening the coupling between domain closure and channel opening. Our results demonstrate that the presence of an auxiliary subunit can determine whether a compound functions as an agonist or antagonist.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Menuz, Karen -- Stroud, Robert M -- Nicoll, Roger A -- Hays, Franklin A -- GM078754/GM/NIGMS NIH HHS/ -- P50 GM73210/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Nov 2;318(5851):815-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17975069" target="_blank"〉PubMed〈/a〉
    Keywords: 6-Cyano-7-nitroquinoxaline-2,3-dione/chemistry/*pharmacology ; Animals ; Benzodiazepines/pharmacology ; Binding, Competitive ; Cell Line ; Cerebellum/cytology ; Crystallography, X-Ray ; *Drug Partial Agonism ; Hippocampus/cytology ; Humans ; In Vitro Techniques ; Interneurons/drug effects ; Mice ; Models, Molecular ; Patch-Clamp Techniques ; Protein Conformation ; Protein Subunits/*physiology ; Pyramidal Cells/drug effects/metabolism ; Quinoxalines/pharmacology ; Receptors, AMPA/*agonists/*antagonists & inhibitors ; Structure-Activity Relationship ; Synaptic Transmission/drug effects ; Trichlormethiazide/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...