ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-04-03
    Description: There is increasing evidence that areas of outstanding conservation importance may coincide with dense human settlement or impact. We tested the generality of these findings using 1 degree-resolution data for sub-Saharan Africa. We find that human population density is positively correlated with species richness of birds, mammals, snakes, and amphibians. This association holds for widespread, narrowly endemic, and threatened species and looks set to persist in the face of foreseeable population growth. Our results contradict earlier expectations of low conflict based on the idea that species richness decreases and human impact increases with primary productivity. We find that across Africa, both variables instead exhibit unimodal relationships with productivity. Modifying priority-setting to take account of human density shows that, at this scale, conflicts between conservation and development are not easily avoided, because many densely inhabited grid cells contain species found nowhere else.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Balmford, A -- Moore, J L -- Brooks, T -- Burgess, N -- Hansen, L A -- Williams, P -- Rahbek, C -- New York, N.Y. -- Science. 2001 Mar 30;291(5513):2616-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Conservation Biology Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK. a.balmford@zoo.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11283376" target="_blank"〉PubMed〈/a〉
    Keywords: Africa South of the Sahara ; Amphibians ; Animals ; Birds ; *Conservation of Natural Resources ; *Ecosystem ; Humans ; Mammals ; Population Density ; Population Growth ; Snakes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-06-16
    Description: The human nuclear pregnane X receptor (hPXR) activates cytochrome P450-3A expression in response to a wide variety of xenobiotics and plays a critical role in mediating dangerous drug-drug interactions. We present the crystal structures of the ligand-binding domain of hPXR both alone and in complex with the cholesterol-lowering drug SR12813 at resolutions of 2.5 and 2.75 angstroms, respectively. The hydrophobic ligand-binding cavity of hPXR contains a small number of polar residues, permitting SR12813 to bind in three distinct orientations. The position and nature of these polar residues were found to be critical for establishing the precise pharmacologic activation profile of PXR. Our findings provide important insights into how hPXR detects xenobiotics and may prove useful in predicting and avoiding drug-drug interactions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Watkins, R E -- Wisely, G B -- Moore, L B -- Collins, J L -- Lambert, M H -- Williams, S P -- Willson, T M -- Kliewer, S A -- Redinbo, M R -- New York, N.Y. -- Science. 2001 Jun 22;292(5525):2329-33. Epub 2001 Jun 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, NC 27599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11408620" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Diphosphonates/chemistry/*metabolism ; Humans ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Receptors, Cytoplasmic and Nuclear/*chemistry/*metabolism ; Receptors, Steroid/*chemistry/*metabolism ; Rifampin/metabolism ; Xenobiotics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-04-13
    Description: Isolated congenital asplenia (ICA) is characterized by the absence of a spleen at birth in individuals with no other developmental defects. The patients are prone to life-threatening bacterial infections. The unbiased analysis of exomes revealed heterozygous mutations in RPSA in 18 patients from eight kindreds, corresponding to more than half the patients and over one-third of the kindreds studied. The clinical penetrance in these kindreds is complete. Expression studies indicated that the mutations carried by the patients-a nonsense mutation, a frameshift duplication, and five different missense mutations-cause autosomal dominant ICA by haploinsufficiency. RPSA encodes ribosomal protein SA, a component of the small subunit of the ribosome. This discovery establishes an essential role for RPSA in human spleen development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677541/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677541/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bolze, Alexandre -- Mahlaoui, Nizar -- Byun, Minji -- Turner, Bridget -- Trede, Nikolaus -- Ellis, Steven R -- Abhyankar, Avinash -- Itan, Yuval -- Patin, Etienne -- Brebner, Samuel -- Sackstein, Paul -- Puel, Anne -- Picard, Capucine -- Abel, Laurent -- Quintana-Murci, Lluis -- Faust, Saul N -- Williams, Anthony P -- Baretto, Richard -- Duddridge, Michael -- Kini, Usha -- Pollard, Andrew J -- Gaud, Catherine -- Frange, Pierre -- Orbach, Daniel -- Emile, Jean-Francois -- Stephan, Jean-Louis -- Sorensen, Ricardo -- Plebani, Alessandro -- Hammarstrom, Lennart -- Conley, Mary Ellen -- Selleri, Licia -- Casanova, Jean-Laurent -- 8UL1TR000043/TR/NCATS NIH HHS/ -- R01 HD061403/HD/NICHD NIH HHS/ -- R01HD061403/HD/NICHD NIH HHS/ -- UL1 TR000043/TR/NCATS NIH HHS/ -- New York, N.Y. -- Science. 2013 May 24;340(6135):976-8. doi: 10.1126/science.1234864. Epub 2013 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23579497" target="_blank"〉PubMed〈/a〉
    Keywords: DNA Mutational Analysis ; Genetic Loci ; *Haploinsufficiency ; Heterotaxy Syndrome/*genetics ; Humans ; Mutation ; Pedigree ; Penetrance ; Receptors, Laminin/*genetics ; Ribosomal Proteins/*genetics ; Spleen/*abnormalities/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-14
    Description: The incidence of tuberculosis has been increasing substantially on a worldwide basis over the past decade, but no tuberculosis-specific drugs have been discovered in 40 years. We identified a diarylquinoline, R207910, that potently inhibits both drug-sensitive and drug-resistant Mycobacterium tuberculosis in vitro (minimum inhibitory concentration 0.06 mug/ml). In mice, R207910 exceeded the bactericidal activities of isoniazid and rifampin by at least 1 log unit. Substitution of drugs included in the World Health Organization's first-line tuberculosis treatment regimen (rifampin, isoniazid, and pyrazinamide) with R207910 accelerated bactericidal activity, leading to complete culture conversion after 2 months of treatment in some combinations. A single dose of R207910 inhibited mycobacterial growth for 1 week. Plasma levels associated with efficacy in mice were well tolerated in healthy human volunteers. Mutants selected in vitro suggest that the drug targets the proton pump of adenosine triphosphate (ATP) synthase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andries, Koen -- Verhasselt, Peter -- Guillemont, Jerome -- Gohlmann, Hinrich W H -- Neefs, Jean-Marc -- Winkler, Hans -- Van Gestel, Jef -- Timmerman, Philip -- Zhu, Min -- Lee, Ennis -- Williams, Peter -- de Chaffoy, Didier -- Huitric, Emma -- Hoffner, Sven -- Cambau, Emmanuelle -- Truffot-Pernot, Chantal -- Lounis, Nacer -- Jarlier, Vincent -- New York, N.Y. -- Science. 2005 Jan 14;307(5707):223-7. Epub 2004 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Johnson & Johnson Pharmaceutical Research and Development, Turnhoutseweg 30, 2340 Beerse, Belgium. kandries@prdbe.jnj.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15591164" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antitubercular Agents/chemistry/pharmacokinetics/*pharmacology/therapeutic use ; Bacterial Proton-Translocating ATPases/*antagonists & ; inhibitors/chemistry/metabolism ; Diarylquinolines ; Dose-Response Relationship, Drug ; Drug Evaluation, Preclinical ; Drug Resistance, Bacterial ; Drug Therapy, Combination ; Enzyme Inhibitors/chemistry/pharmacology/therapeutic use ; Humans ; Male ; Mice ; Microbial Sensitivity Tests ; Molecular Sequence Data ; Mycobacterium smegmatis/drug effects/enzymology/growth & development ; Mycobacterium tuberculosis/*drug effects/enzymology/growth & development ; Point Mutation ; Protein Subunits/antagonists & inhibitors/chemistry ; Quinolines/chemistry/pharmacokinetics/*pharmacology/*therapeutic use ; Tuberculosis/*drug therapy/microbiology ; Tuberculosis, Multidrug-Resistant/drug therapy/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1988-12-16
    Description: Human T cell leukemia viruses (HTLV-I and HTLV-II) can infect many cell types in vitro. HTLV-I and HTLV-II use the same cell surface receptor, as shown by interference with syncytium formation and with infection by vesicular stomatitis virus (VSV) pseudotypes bearing the HTLV envelope glycoproteins. Human-mouse somatic cell hybrids were used to determine which human chromosome was required to confer susceptibility to VSV(HTLV) infection. The only human chromosome common to all susceptible cell hybrids was chromosome 17, and the receptor gene was localized to 17cen-qter. Antibodies to surface antigens known to be determined by genes on 17q did not block the HTLV receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sommerfelt, M A -- Williams, B P -- Clapham, P R -- Solomon, E -- Goodfellow, P N -- Weiss, R A -- New York, N.Y. -- Science. 1988 Dec 16;242(4885):1557-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Chester Beatty Laboratories, Institute of Cancer Research, London, U.K.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3201246" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Cell Line ; Chromosome Mapping ; *Chromosomes, Human, Pair 17 ; Cricetinae ; *Genes ; Human T-lymphotropic virus 1/*physiology ; Human T-lymphotropic virus 2/*physiology ; Humans ; Hybrid Cells/cytology/microbiology ; Mice ; Rats ; Receptors, Virus/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...