ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1989-11-10
    Description: A method was developed for selectively isolating genes from localized regions of the human genome that are contained in interspecific hybrid cells. Complementary human DNA was prepared from a human-rodent somatic cell hybrid that contained less than 1% human DNA, by using consensus 5' intron splice sequences as primers. These primers would select immature, unspliced messenger RNA (still retaining species-specific repeat sequences) as templates. Screening a derived complementary DNA library for human repeat sequences resulted in the isolation of human clones at the anticipated frequency with characteristics expected of exons of transcribed human genes--single copy sequences that hybridized to discrete bands on Northern (RNA) blots.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, P -- Legerski, R -- Siciliano, M J -- GM19436/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1989 Nov 10;246(4931):813-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, University of Texas, M.D. Anderson Cancer Center, Houston 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2479099" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blotting, Northern ; Blotting, Southern ; Chromosome Mapping ; Chromosomes, Human, Pair 19 ; Cloning, Molecular ; Cricetinae ; DNA/biosynthesis/genetics/*isolation & purification ; Humans ; *Hybrid Cells ; Introns ; Nucleic Acid Hybridization ; RNA/genetics ; Repetitive Sequences, Nucleic Acid ; Restriction Mapping ; Templates, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-07-03
    Description: On activation by receptors, the ubiquitously expressed class IA isoforms (p110alpha and p110beta) of phosphatidylinositol-3-OH kinase (PI(3)K) generate lipid second messengers, which initiate multiple signal transduction cascades. Recent studies have demonstrated specific functions for p110alpha in growth factor and insulin signalling. To probe for distinct functions of p110beta, we constructed conditional knockout mice. Here we show that ablation of p110beta in the livers of the resulting mice leads to impaired insulin sensitivity and glucose homeostasis, while having little effect on phosphorylation of Akt, suggesting the involvement of a kinase-independent role of p110beta in insulin metabolic action. Using established mouse embryonic fibroblasts, we found that removal of p110beta also had little effect on Akt phosphorylation in response to stimulation by insulin and epidermal growth factor, but resulted in retarded cell proliferation. Reconstitution of p110beta-null cells with a wild-type or kinase-dead allele of p110beta demonstrated that p110beta possesses kinase-independent functions in regulating cell proliferation and trafficking. However, the kinase activity of p110beta was required for G-protein-coupled receptor signalling triggered by lysophosphatidic acid and had a function in oncogenic transformation. Most strikingly, in an animal model of prostate tumour formation induced by Pten loss, ablation of p110beta (also known as Pik3cb), but not that of p110alpha (also known as Pik3ca), impeded tumorigenesis with a concomitant diminution of Akt phosphorylation. Taken together, our findings demonstrate both kinase-dependent and kinase-independent functions for p110beta, and strongly indicate the kinase-dependent functions of p110beta as a promising target in cancer therapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750091/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750091/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jia, Shidong -- Liu, Zhenning -- Zhang, Sen -- Liu, Pixu -- Zhang, Lei -- Lee, Sang Hyun -- Zhang, Jing -- Signoretti, Sabina -- Loda, Massimo -- Roberts, Thomas M -- Zhao, Jean J -- P01 CA050661/CA/NCI NIH HHS/ -- P01 CA050661-200001/CA/NCI NIH HHS/ -- P01 CA089021/CA/NCI NIH HHS/ -- P01 CA089021-06A1/CA/NCI NIH HHS/ -- P50 CA089393/CA/NCI NIH HHS/ -- P50 CA089393-08S1/CA/NCI NIH HHS/ -- P50 CA090381/CA/NCI NIH HHS/ -- P50 CA090381-05/CA/NCI NIH HHS/ -- R01 CA030002/CA/NCI NIH HHS/ -- R01 CA030002-27/CA/NCI NIH HHS/ -- R01 CA134502/CA/NCI NIH HHS/ -- R01 CA134502-01/CA/NCI NIH HHS/ -- England -- Nature. 2008 Aug 7;454(7205):776-9. doi: 10.1038/nature07091. Epub 2008 Jun 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18594509" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Proliferation/drug effects ; *Cell Transformation, Neoplastic ; Epidermal Growth Factor/pharmacology ; Fibroblasts/cytology ; Glucose/*metabolism ; Glucose Intolerance/enzymology/genetics ; Homeostasis ; Humans ; Insulin/*metabolism/pharmacology ; Insulin Resistance/genetics ; Liver/enzymology/metabolism ; Male ; Mice ; Mice, Inbred C57BL ; PTEN Phosphohydrolase/deficiency/genetics ; Phosphatidylinositol 3-Kinases/deficiency/genetics/*metabolism ; Phosphorylation/drug effects ; Prostatic Neoplasms/enzymology/genetics/pathology ; Proto-Oncogene Proteins c-akt/metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-03-03
    Description: Transgenic expression of just four defined transcription factors (c-Myc, Klf4, Oct4 and Sox2) is sufficient to reprogram somatic cells to a pluripotent state. The resulting induced pluripotent stem (iPS) cells resemble embryonic stem cells in their properties and potential to differentiate into a spectrum of adult cell types. Current reprogramming strategies involve retroviral, lentiviral, adenoviral and plasmid transfection to deliver reprogramming factor transgenes. Although the latter two methods are transient and minimize the potential for insertion mutagenesis, they are currently limited by diminished reprogramming efficiencies. piggyBac (PB) transposition is host-factor independent, and has recently been demonstrated to be functional in various human and mouse cell lines. The PB transposon/transposase system requires only the inverted terminal repeats flanking a transgene and transient expression of the transposase enzyme to catalyse insertion or excision events. Here we demonstrate successful and efficient reprogramming of murine and human embryonic fibroblasts using doxycycline-inducible transcription factors delivered by PB transposition. Stable iPS cells thus generated express characteristic pluripotency markers and succeed in a series of rigorous differentiation assays. By taking advantage of the natural propensity of the PB system for seamless excision, we show that the individual PB insertions can be removed from established iPS cell lines, providing an invaluable tool for discovery. In addition, we have demonstrated the traceless removal of reprogramming factors joined with viral 2A sequences delivered by a single transposon from murine iPS lines. We anticipate that the unique properties of this virus-independent simplification of iPS cell production will accelerate this field further towards full exploration of the reprogramming process and future cell-based therapies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758996/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758996/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woltjen, Knut -- Michael, Iacovos P -- Mohseni, Paria -- Desai, Ridham -- Mileikovsky, Maria -- Hamalainen, Riikka -- Cowling, Rebecca -- Wang, Wei -- Liu, Pentao -- Gertsenstein, Marina -- Kaji, Keisuke -- Sung, Hoon-Ki -- Nagy, Andras -- 077186/Wellcome Trust/United Kingdom -- G0700672/Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2009 Apr 9;458(7239):766-70. doi: 10.1038/nature07863. Epub 2009 Mar 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19252478" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Differentiation ; Cell Line ; Cells, Cultured ; Cellular Reprogramming/*genetics ; DNA Transposable Elements ; Fibroblasts/*cytology/*physiology/virology ; Gene Order ; Gene Transfer Techniques ; Genetic Vectors/*genetics ; Humans ; Mice ; Mice, Nude ; Pluripotent Stem Cells/*physiology ; Sequence Alignment ; Transcription Factors/genetics ; Transgenes/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-03-26
    Description: Autism is a multifactorial neurodevelopmental disorder affecting more males than females; consequently, under a multifactorial genetic hypothesis, females are affected only when they cross a higher biological threshold. We hypothesize that deleterious variants at conserved residues are enriched in severely affected patients arising from female-enriched multiplex families with severe disease, enhancing the detection of key autism genes in modest numbers of cases. Here we show the use of this strategy by identifying missense and dosage sequence variants in the gene encoding the adhesive junction-associated delta-catenin protein (CTNND2) in female-enriched multiplex families and demonstrating their loss-of-function effect by functional analyses in zebrafish embryos and cultured hippocampal neurons from wild-type and Ctnnd2 null mouse embryos. Finally, through gene expression and network analyses, we highlight a critical role for CTNND2 in neuronal development and an intimate connection to chromatin biology. Our data contribute to the understanding of the genetic architecture of autism and suggest that genetic analyses of phenotypic extremes, such as female-enriched multiplex families, are of innate value in multifactorial disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383723/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383723/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Turner, Tychele N -- Sharma, Kamal -- Oh, Edwin C -- Liu, Yangfan P -- Collins, Ryan L -- Sosa, Maria X -- Auer, Dallas R -- Brand, Harrison -- Sanders, Stephan J -- Moreno-De-Luca, Daniel -- Pihur, Vasyl -- Plona, Teri -- Pike, Kristen -- Soppet, Daniel R -- Smith, Michael W -- Cheung, Sau Wai -- Martin, Christa Lese -- State, Matthew W -- Talkowski, Michael E -- Cook, Edwin -- Huganir, Richard -- Katsanis, Nicholas -- Chakravarti, Aravinda -- 1U24MH081810/MH/NIMH NIH HHS/ -- 5R25MH071584-07/MH/NIMH NIH HHS/ -- MH095867/MH/NIMH NIH HHS/ -- MH19961-14/MH/NIMH NIH HHS/ -- R00 MH095867/MH/NIMH NIH HHS/ -- R01 DK075972/DK/NIDDK NIH HHS/ -- R01 MH060007/MH/NIMH NIH HHS/ -- R01 MH074090/MH/NIMH NIH HHS/ -- R01MH074090/MH/NIMH NIH HHS/ -- R01MH081754/MH/NIMH NIH HHS/ -- England -- Nature. 2015 Apr 2;520(7545):51-6. doi: 10.1038/nature14186. Epub 2015 Mar 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] Predoctoral Training Program in Human Genetics and Molecular Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [3] National Institute of Mental Health (NIMH) Autism Centers of Excellence (ACE) Genetics Consortium at the University of California, Los Angeles, Los Angeles, California 90095, USA. ; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. ; Center for Human Disease Modeling, Duke University, Durham, North Carolina 27710, USA. ; Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA. ; 1] Center for Complex Disease Genomics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA [2] National Institute of Mental Health (NIMH) Autism Centers of Excellence (ACE) Genetics Consortium at the University of California, Los Angeles, Los Angeles, California 90095, USA. ; 1] Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA [2] Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 USA. ; 1] National Institute of Mental Health (NIMH) Autism Centers of Excellence (ACE) Genetics Consortium at the University of California, Los Angeles, Los Angeles, California 90095, USA [2] Department of Psychiatry, University of California, San Francisco, San Francisco, California 94158, USA. ; 1] National Institute of Mental Health (NIMH) Autism Centers of Excellence (ACE) Genetics Consortium at the University of California, Los Angeles, Los Angeles, California 90095, USA [2] Department of Psychiatry, Yale University, New Haven, Connecticut 06511, USA. ; Leidos Biomedical Research, Inc., Frederick, Maryland 21702, USA. ; National Human Genome Research Institute, Bethesda, Maryland 20892, USA. ; Baylor College of Medicine, Houston, Texas 77030, USA. ; 1] National Institute of Mental Health (NIMH) Autism Centers of Excellence (ACE) Genetics Consortium at the University of California, Los Angeles, Los Angeles, California 90095, USA [2] Autism &Developmental Medicine Institute, Geisinger Health System, Lewisburg, Pennsylvania 17837, USA. ; University of Illinois at Chicago, Chicago, Illinois 60608, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25807484" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autistic Disorder/*genetics/*metabolism ; Brain/embryology/*metabolism ; Catenins/*deficiency/*genetics/metabolism ; Cells, Cultured ; Chromatin/genetics/metabolism ; DNA Copy Number Variations/genetics ; Embryo, Mammalian/cytology/metabolism ; Exome/genetics ; Female ; Gene Expression ; Gene Expression Regulation, Developmental ; Hippocampus/pathology ; Humans ; Male ; Mice ; Models, Genetic ; Multifactorial Inheritance/genetics ; Mutation, Missense ; Nerve Net ; Neurons/cytology/metabolism ; Sex Characteristics ; Zebrafish/embryology/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-13
    Description: We report classes of electronic systems that achieve thicknesses, effective elastic moduli, bending stiffnesses, and areal mass densities matched to the epidermis. Unlike traditional wafer-based technologies, laminating such devices onto the skin leads to conformal contact and adequate adhesion based on van der Waals interactions alone, in a manner that is mechanically invisible to the user. We describe systems incorporating electrophysiological, temperature, and strain sensors, as well as transistors, light-emitting diodes, photodetectors, radio frequency inductors, capacitors, oscillators, and rectifying diodes. Solar cells and wireless coils provide options for power supply. We used this type of technology to measure electrical activity produced by the heart, brain, and skeletal muscles and show that the resulting data contain sufficient information for an unusual type of computer game controller.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Dae-Hyeong -- Lu, Nanshu -- Ma, Rui -- Kim, Yun-Soung -- Kim, Rak-Hwan -- Wang, Shuodao -- Wu, Jian -- Won, Sang Min -- Tao, Hu -- Islam, Ahmad -- Yu, Ki Jun -- Kim, Tae-il -- Chowdhury, Raeed -- Ying, Ming -- Xu, Lizhi -- Li, Ming -- Chung, Hyun-Joong -- Keum, Hohyun -- McCormick, Martin -- Liu, Ping -- Zhang, Yong-Wei -- Omenetto, Fiorenzo G -- Huang, Yonggang -- Coleman, Todd -- Rogers, John A -- New York, N.Y. -- Science. 2011 Aug 12;333(6044):838-43. doi: 10.1126/science.1206157.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Materials Science and Engineering, Beckman Institute for Advanced Science and Technology, and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21836009" target="_blank"〉PubMed〈/a〉
    Keywords: Adhesiveness ; Dermis ; Elastic Modulus ; Elastomers ; Electric Power Supplies ; Electrocardiography/instrumentation/methods ; Electrodes ; Electrodiagnosis/*instrumentation/*methods ; Electroencephalography/instrumentation/methods ; Electromyography/instrumentation/methods ; *Epidermis ; Humans ; Mechanical Phenomena ; Monitoring, Physiologic/*instrumentation/*methods ; Nanostructures ; *Semiconductors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-08-01
    Description: DNA methylation is a crucial element in the epigenetic regulation of mammalian embryonic development. However, its dynamic patterns have not been analysed at the genome scale in human pre-implantation embryos due to technical difficulties and the scarcity of required materials. Here we systematically profile the methylome of human early embryos from the zygotic stage through to post-implantation by reduced representation bisulphite sequencing and whole-genome bisulphite sequencing. We show that the major wave of genome-wide demethylation is complete at the 2-cell stage, contrary to previous observations in mice. Moreover, the demethylation of the paternal genome is much faster than that of the maternal genome, and by the end of the zygotic stage the genome-wide methylation level in male pronuclei is already lower than that in female pronuclei. The inverse correlation between promoter methylation and gene expression gradually strengthens during early embryonic development, reaching its peak at the post-implantation stage. Furthermore, we show that active genes, with the trimethylation of histone H3 at lysine 4 (H3K4me3) mark at the promoter regions in pluripotent human embryonic stem cells, are essentially devoid of DNA methylation in both mature gametes and throughout pre-implantation development. Finally, we also show that long interspersed nuclear elements or short interspersed nuclear elements that are evolutionarily young are demethylated to a milder extent compared to older elements in the same family and have higher abundance of transcripts, indicating that early embryos tend to retain higher residual methylation at the evolutionarily younger and more active transposable elements. Our work provides insights into the critical features of the methylome of human early embryos, as well as its functional relation to the regulation of gene expression and the repression of transposable elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guo, Hongshan -- Zhu, Ping -- Yan, Liying -- Li, Rong -- Hu, Boqiang -- Lian, Ying -- Yan, Jie -- Ren, Xiulian -- Lin, Shengli -- Li, Junsheng -- Jin, Xiaohu -- Shi, Xiaodan -- Liu, Ping -- Wang, Xiaoye -- Wang, Wei -- Wei, Yuan -- Li, Xianlong -- Guo, Fan -- Wu, Xinglong -- Fan, Xiaoying -- Yong, Jun -- Wen, Lu -- Xie, Sunney X -- Tang, Fuchou -- Qiao, Jie -- England -- Nature. 2014 Jul 31;511(7511):606-10. doi: 10.1038/nature13544. Epub 2014 Jul 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Biodynamic Optical Imaging Center &Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China [2]. ; 1] Biodynamic Optical Imaging Center &Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China [2] Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China [3]. ; 1] Biodynamic Optical Imaging Center &Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China [2] Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China [3]. ; Biodynamic Optical Imaging Center &Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China. ; 1] Biodynamic Optical Imaging Center &Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China [2] Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing 100191, China. ; Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China. ; 1] Biodynamic Optical Imaging Center &Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China [2] Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; 1] Biodynamic Optical Imaging Center &Center for Reproductive Medicine, College of Life Sciences, Third Hospital, Peking University, Beijing 100871, China [2] Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25079557" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *DNA Methylation ; DNA Transposable Elements/genetics ; Embryo, Mammalian ; Embryonic Stem Cells/physiology ; *Epigenesis, Genetic ; Female ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Germ Cells/metabolism ; Histones/metabolism ; Humans ; Long Interspersed Nucleotide Elements/genetics ; Male ; Mice ; Promoter Regions, Genetic/genetics ; Short Interspersed Nucleotide Elements/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1993-08-20
    Description: The pericentric inversion of chromosome 16 [inv(16)(p13q22)] is a characteristic karyotypic abnormality associated with acute myeloid leukemia, most commonly of the M4Eo subtype. The 16p and 16q breakpoints were pinpointed by yeast artificial chromosome and cosmid cloning, and the two genes involved in this inversion were identified. On 16q the inversion occurred near the end of the coding region for CBF beta, also known as PEBP2 beta, a subunit of a heterodimeric transcription factor regulating genes expressed in T cells; on 16p a smooth muscle myosin heavy chain (SMMHC) gene (MYH11) was interrupted. In six of six inv(16) patient samples tested, an in-frame fusion messenger RNA was demonstrated that connected the first 165 amino acids of CBF beta with the tail region of SMMHC. The repeated coiled coil of SMMHC may result in dimerization of the CBF beta fusion protein, which in turn would lead to alterations in transcriptional regulation and contribute to leukemic transformation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liu, P -- Tarle, S A -- Hajra, A -- Claxton, D F -- Marlton, P -- Freedman, M -- Siciliano, M J -- Collins, F S -- CA55164/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Aug 20;261(5124):1041-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor 48109.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8351518" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; *Chromosome Inversion ; *Chromosomes, Human, Pair 16 ; Cloning, Molecular ; Core Binding Factor Alpha 1 Subunit ; Core Binding Factor beta Subunit ; Core Binding Factors ; Cosmids ; DNA-Binding Proteins/*genetics ; Humans ; In Situ Hybridization, Fluorescence ; Leukemia, Myelomonocytic, Acute/*genetics ; Molecular Sequence Data ; Muscle, Smooth/chemistry ; Myosins/*genetics ; *Neoplasm Proteins ; Polymerase Chain Reaction ; Protein Multimerization ; Restriction Mapping ; Transcription Factor AP-2 ; Transcription Factors/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-06
    Description: The prevalent DNA modification in higher organisms is the methylation of cytosine to 5-methylcytosine (5mC), which is partially converted to 5-hydroxymethylcytosine (5hmC) by the Tet (ten eleven translocation) family of dioxygenases. Despite their importance in epigenetic regulation, it is unclear how these cytosine modifications are reversed. Here, we demonstrate that 5mC and 5hmC in DNA are oxidized to 5-carboxylcytosine (5caC) by Tet dioxygenases in vitro and in cultured cells. 5caC is specifically recognized and excised by thymine-DNA glycosylase (TDG). Depletion of TDG in mouse embyronic stem cells leads to accumulation of 5caC to a readily detectable level. These data suggest that oxidation of 5mC by Tet proteins followed by TDG-mediated base excision of 5caC constitutes a pathway for active DNA demethylation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462231/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462231/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Yu-Fei -- Li, Bin-Zhong -- Li, Zheng -- Liu, Peng -- Wang, Yang -- Tang, Qingyu -- Ding, Jianping -- Jia, Yingying -- Chen, Zhangcheng -- Li, Lin -- Sun, Yan -- Li, Xiuxue -- Dai, Qing -- Song, Chun-Xiao -- Zhang, Kangling -- He, Chuan -- Xu, Guo-Liang -- 1S10RR027643-01/RR/NCRR NIH HHS/ -- GM071440/GM/NIGMS NIH HHS/ -- R01 GM071440/GM/NIGMS NIH HHS/ -- S10 RR027643/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2011 Sep 2;333(6047):1303-7. doi: 10.1126/science.1210944. Epub 2011 Aug 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Group of DNA Metabolism, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21817016" target="_blank"〉PubMed〈/a〉
    Keywords: 5-Methylcytosine/metabolism ; Animals ; Cell Line ; Cytosine/*analogs & derivatives/metabolism ; DNA/*metabolism ; DNA Methylation ; DNA-Binding Proteins/genetics/*metabolism ; Embryonic Stem Cells ; HEK293 Cells ; Humans ; Induced Pluripotent Stem Cells/metabolism ; Mice ; Oxidation-Reduction ; Proto-Oncogene Proteins/genetics/*metabolism ; RNA, Small Interfering ; Thymine DNA Glycosylase/genetics/*metabolism ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-01
    Description: An HIV-1 DNA prime vaccine, with a recombinant adenovirus type 5 (rAd5) boost, failed to protect from HIV-1 acquisition. We studied the nature of the vaccine-induced antibody (Ab) response to HIV-1 envelope (Env). HIV-1-reactive plasma Ab titers were higher to Env gp41 than to gp120, and repertoire analysis demonstrated that 93% of HIV-1-reactive Abs from memory B cells responded to Env gp41. Vaccine-induced gp41-reactive monoclonal antibodies were non-neutralizing and frequently polyreactive with host and environmental antigens, including intestinal microbiota (IM). Next-generation sequencing of an immunoglobulin heavy chain variable region repertoire before vaccination revealed an Env-IM cross-reactive Ab that was clonally related to a subsequent vaccine-induced gp41-reactive Ab. Thus, HIV-1 Env DNA-rAd5 vaccine induced a dominant IM-polyreactive, non-neutralizing gp41-reactive Ab repertoire response that was associated with no vaccine efficacy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562404/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562404/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Williams, Wilton B -- Liao, Hua-Xin -- Moody, M Anthony -- Kepler, Thomas B -- Alam, S Munir -- Gao, Feng -- Wiehe, Kevin -- Trama, Ashley M -- Jones, Kathryn -- Zhang, Ruijun -- Song, Hongshuo -- Marshall, Dawn J -- Whitesides, John F -- Sawatzki, Kaitlin -- Hua, Axin -- Liu, Pinghuang -- Tay, Matthew Z -- Seaton, Kelly E -- Shen, Xiaoying -- Foulger, Andrew -- Lloyd, Krissey E -- Parks, Robert -- Pollara, Justin -- Ferrari, Guido -- Yu, Jae-Sung -- Vandergrift, Nathan -- Montefiori, David C -- Sobieszczyk, Magdalena E -- Hammer, Scott -- Karuna, Shelly -- Gilbert, Peter -- Grove, Doug -- Grunenberg, Nicole -- McElrath, M Juliana -- Mascola, John R -- Koup, Richard A -- Corey, Lawrence -- Nabel, Gary J -- Morgan, Cecilia -- Churchyard, Gavin -- Maenza, Janine -- Keefer, Michael -- Graham, Barney S -- Baden, Lindsey R -- Tomaras, Georgia D -- Haynes, Barton F -- P30 AI064518/AI/NIAID NIH HHS/ -- P30-AI-64518/AI/NIAID NIH HHS/ -- U01 AI069412/AI/NIAID NIH HHS/ -- UM1 AI068614/AI/NIAID NIH HHS/ -- UM1 AI068618/AI/NIAID NIH HHS/ -- UM1 AI068635/AI/NIAID NIH HHS/ -- UM1 AI069412/AI/NIAID NIH HHS/ -- UM1 AI069470/AI/NIAID NIH HHS/ -- UM1 AI069481/AI/NIAID NIH HHS/ -- UM1 AI069511/AI/NIAID NIH HHS/ -- UM1 AI100645/AI/NIAID NIH HHS/ -- UM1AI068618/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2015 Aug 14;349(6249):aab1253. doi: 10.1126/science.aab1253. Epub 2015 Jul 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA. barton.haynes@duke.edu wilton.williams@duke.edu. ; Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA. ; Department of Microbiology, Boston University School of Medicine, Boston, MA, USA. ; Department of Medicine, Columbia University Medical Center, New York, NY, USA. ; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. ; The Statistical Center for HIV/AIDS Research and Prevention (SCHARP), Fred Hutchinson Cancer Research Center, Seattle, WA, USA. ; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. ; The Aurum Institute, Johannesburg, South Africa. ; University of Rochester School of Medicine, Rochester, NY, USA. ; Brigham and Women's Hospital, Boston, MA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26229114" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/*immunology ; Adenoviridae ; Antibodies, Monoclonal/genetics/immunology ; Antibody Formation ; Cross Reactions ; HIV Antibodies/genetics/*immunology ; HIV Envelope Protein gp120/immunology ; HIV Envelope Protein gp41/genetics/*immunology ; HIV-1/*immunology ; Humans ; Immunity ; Immunoglobulin Heavy Chains/genetics/immunology ; Immunoglobulin Variable Region/genetics/immunology ; Immunologic Memory ; Intestines/microbiology ; Microbiota/*immunology ; Vaccines, DNA/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1982-12-17
    Description: A 311-base pair fragment containing the SV40 origin of replication was linked to the chicken thymidine kinase gene on a recombinant plasmid. This molecule was transfected into human 143 thymidine kinase-deficient (TK-) cells, and colonies positive for thymidine kinase were selected. When cell lines derived from these colonies were fused to permissive simian cells that produce SV40 T antigen, the recombinant plasmid excised itself from the human cellular genome and replicated with a high copy number per cell. These results show that this segment of the viral genome is the only sequence required in cis to mediate SV40 excision and replication upon fusion to permissive cells. In addition, we have shown that excised plasmids apparently identical to the input DNA can be efficiently rescued in Escherichia coli. SV40 excision and replication may therefore be useful for the recovery of cloned genes from eukaryotic cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Conrad, S E -- Liu, C P -- Botchan, M R -- CA 30490/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1982 Dec 17;218(4578):1223-5.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6293055" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cells, Cultured ; Chickens ; *DNA Replication ; DNA, Viral/*genetics ; Gene Expression Regulation ; Genes, Viral ; Humans ; Recombination, Genetic ; Simian virus 40/*genetics ; *Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...