ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-04-23
    Description: The functions of G-protein-coupled receptors (GPCRs) are primarily mediated and modulated by three families of proteins: the heterotrimeric G proteins, the G-protein-coupled receptor kinases (GRKs) and the arrestins. G proteins mediate activation of second-messenger-generating enzymes and other effectors, GRKs phosphorylate activated receptors, and arrestins subsequently bind phosphorylated receptors and cause receptor desensitization. Arrestins activated by interaction with phosphorylated receptors can also mediate G-protein-independent signalling by serving as adaptors to link receptors to numerous signalling pathways. Despite their central role in regulation and signalling of GPCRs, a structural understanding of beta-arrestin activation and interaction with GPCRs is still lacking. Here we report the crystal structure of beta-arrestin-1 (also called arrestin-2) in complex with a fully phosphorylated 29-amino-acid carboxy-terminal peptide derived from the human V2 vasopressin receptor (V2Rpp). This peptide has previously been shown to functionally and conformationally activate beta-arrestin-1 (ref. 5). To capture this active conformation, we used a conformationally selective synthetic antibody fragment (Fab30) that recognizes the phosphopeptide-activated state of beta-arrestin-1. The structure of the beta-arrestin-1-V2Rpp-Fab30 complex shows marked conformational differences in beta-arrestin-1 compared to its inactive conformation. These include rotation of the amino- and carboxy-terminal domains relative to each other, and a major reorientation of the 'lariat loop' implicated in maintaining the inactive state of beta-arrestin-1. These results reveal, at high resolution, a receptor-interacting interface on beta-arrestin, and they indicate a potentially general molecular mechanism for activation of these multifunctional signalling and regulatory proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654799/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654799/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shukla, Arun K -- Manglik, Aashish -- Kruse, Andrew C -- Xiao, Kunhong -- Reis, Rosana I -- Tseng, Wei-Chou -- Staus, Dean P -- Hilger, Daniel -- Uysal, Serdar -- Huang, Li-Yin -- Paduch, Marcin -- Tripathi-Shukla, Prachi -- Koide, Akiko -- Koide, Shohei -- Weis, William I -- Kossiakoff, Anthony A -- Kobilka, Brian K -- Lefkowitz, Robert J -- GM072688/GM/NIGMS NIH HHS/ -- GM087519/GM/NIGMS NIH HHS/ -- HL 075443/HL/NHLBI NIH HHS/ -- HL16037/HL/NHLBI NIH HHS/ -- HL70631/HL/NHLBI NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- P41 RR011823/RR/NCRR NIH HHS/ -- R01 HL016037/HL/NHLBI NIH HHS/ -- R01 HL070631/HL/NHLBI NIH HHS/ -- R01 NS028471/NS/NINDS NIH HHS/ -- U01 GM094588/GM/NIGMS NIH HHS/ -- U54 GM074946/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 May 2;497(7447):137-41. doi: 10.1038/nature12120. Epub 2013 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23604254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestins/*chemistry/immunology/*metabolism ; Crystallography, X-Ray ; Humans ; Immunoglobulin Fab Fragments/chemistry/immunology/metabolism ; Models, Molecular ; Phosphopeptides/*chemistry/*metabolism ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Stability ; Rats ; Receptors, Vasopressin/*chemistry ; Rotation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...