ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-08-15
    Description: The aryl hydrocarbon receptor (AhR) is a highly conserved ligand-dependent transcription factor that senses environmental toxins and endogenous ligands, thereby inducing detoxifying enzymes and modulating immune cell differentiation and responses. We hypothesized that AhR evolved to sense not only environmental pollutants but also microbial insults. We characterized bacterial pigmented virulence factors, namely the phenazines from Pseudomonas aeruginosa and the naphthoquinone phthiocol from Mycobacterium tuberculosis, as ligands of AhR. Upon ligand binding, AhR activation leads to virulence factor degradation and regulated cytokine and chemokine production. The relevance of AhR to host defence is underlined by heightened susceptibility of AhR-deficient mice to both P. aeruginosa and M. tuberculosis. Thus, we demonstrate that AhR senses distinct bacterial virulence factors and controls antibacterial responses, supporting a previously unidentified role for AhR as an intracellular pattern recognition receptor, and identify bacterial pigments as a new class of pathogen-associated molecular patterns.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Moura-Alves, Pedro -- Fae, Kellen -- Houthuys, Erica -- Dorhoi, Anca -- Kreuchwig, Annika -- Furkert, Jens -- Barison, Nicola -- Diehl, Anne -- Munder, Antje -- Constant, Patricia -- Skrahina, Tatsiana -- Guhlich-Bornhof, Ute -- Klemm, Marion -- Koehler, Anne-Britta -- Bandermann, Silke -- Goosmann, Christian -- Mollenkopf, Hans-Joachim -- Hurwitz, Robert -- Brinkmann, Volker -- Fillatreau, Simon -- Daffe, Mamadou -- Tummler, Burkhard -- Kolbe, Michael -- Oschkinat, Hartmut -- Krause, Gerd -- Kaufmann, Stefan H E -- England -- Nature. 2014 Aug 28;512(7515):387-92. doi: 10.1038/nature13684. Epub 2014 Aug 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Max Planck Institute for Infection Biology, Department of Immunology, Chariteplatz 1, 10117 Berlin, Germany [2]. ; Leibniz Institute for Molecular Pharmacology (FMP), Robert-Rossle-Strasse 10, 13125 Berlin, Germany. ; Max Planck Institute for Infection Biology, Structural Systems Biology, Chariteplatz 1, 10117 Berlin, Germany. ; Clinical Research Group, Clinic for Pediatric Pneumology, Allergology and Neonatology, OE 6710, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany. ; Institute of Pharmacology and Structural Biology (IPBS), CNRS and University of Toulouse (Toulouse III), 205 Route de Narbonne, 31077, Toulouse cedex 04, Toulouse, France. ; Max Planck Institute for Infection Biology, Department of Immunology, Chariteplatz 1, 10117 Berlin, Germany. ; Microscopy Core Facility, Max Planck Institute for Infection Biology, Department of Immunology, Chariteplatz 1, 10117 Berlin, Germany. ; Microarray Core Facility, Max Planck Institute for Infection Biology, Department of Immunology, Chariteplatz 1, 10117 Berlin, Germany. ; Protein Purification Core Facility, Max Planck Institute for Infection Biology, Chariteplatz 1, 10117 Berlin, Germany. ; German Rheumatism Research Centre Berlin (DRFZ), a Leibniz Institute, Chariteplatz 1, 10117 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25119038" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/metabolism ; Basic Helix-Loop-Helix Transcription Factors/*metabolism ; Bone Marrow Cells/cytology ; Cytokines/immunology/metabolism ; Feedback, Physiological ; Humans ; Ligands ; Macrophage Activation ; Mice ; Mycobacterium tuberculosis/growth & development/*immunology/metabolism ; Phenazines/metabolism ; Pigments, Biological/chemistry/*metabolism ; Pseudomonas Infections/metabolism ; Pseudomonas aeruginosa/*immunology/metabolism ; Pyocyanine/metabolism ; Receptors, Aryl Hydrocarbon/*metabolism ; Receptors, Pattern Recognition/*metabolism ; Virulence Factors/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-16
    Description: Pathogenic bacteria using a type III secretion system (T3SS) to manipulate host cells cause many different infections including Shigella dysentery, typhoid fever, enterohaemorrhagic colitis and bubonic plague. An essential part of the T3SS is a hollow needle-like protein filament through which effector proteins are injected into eukaryotic host cells. Currently, the three-dimensional structure of the needle is unknown because it is not amenable to X-ray crystallography and solution NMR, as a result of its inherent non-crystallinity and insolubility. Cryo-electron microscopy combined with crystal or solution NMR subunit structures has recently provided a powerful hybrid approach for studying supramolecular assemblies, resulting in low-resolution and medium-resolution models. However, such approaches cannot deliver atomic details, especially of the crucial subunit-subunit interfaces, because of the limited cryo-electron microscopic resolution obtained in these studies. Here we report an alternative approach combining recombinant wild-type needle production, solid-state NMR, electron microscopy and Rosetta modelling to reveal the supramolecular interfaces and ultimately the complete atomic structure of the Salmonella typhimurium T3SS needle. We show that the 80-residue subunits form a right-handed helical assembly with roughly 11 subunits per two turns, similar to that of the flagellar filament of S. typhimurium. In contrast to established models of the needle in which the amino terminus of the protein subunit was assumed to be alpha-helical and positioned inside the needle, our model reveals an extended amino-terminal domain that is positioned on the surface of the needle, while the highly conserved carboxy terminus points towards the lumen.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3598588/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3598588/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Loquet, Antoine -- Sgourakis, Nikolaos G -- Gupta, Rashmi -- Giller, Karin -- Riedel, Dietmar -- Goosmann, Christian -- Griesinger, Christian -- Kolbe, Michael -- Baker, David -- Becker, Stefan -- Lange, Adam -- 1R01GM092802-01/GM/NIGMS NIH HHS/ -- R01 GM092802/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 May 20;486(7402):276-9. doi: 10.1038/nature11079.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Gottingen, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22699623" target="_blank"〉PubMed〈/a〉
    Keywords: *Bacterial Secretion Systems ; HeLa Cells ; Humans ; Microscopy, Electron ; *Models, Molecular ; Nuclear Magnetic Resonance, Biomolecular ; Protein Structure, Secondary ; Salmonella typhimurium/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...