ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-12-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raman, Malavika -- Harper, J Wade -- R01 AG011085/AG/NIA NIH HHS/ -- R01 GM070565/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Dec 3;462(7273):585-6. doi: 10.1038/462585a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19956252" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Biology ; Cyclin E/metabolism ; Humans ; Models, Molecular ; Proteasome Endopeptidase Complex/*physiology ; Ubiquitin-Activating Enzymes/metabolism ; Ubiquitination/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-10-09
    Description: Nitric oxide (NO) is extremely toxic to Clostridium botulinum, but its molecular targets are unknown. Here, we identify a heme protein sensor (SONO) that displays femtomolar affinity for NO. The crystal structure of the SONO heme domain reveals a previously undescribed fold and a strategically placed tyrosine residue that modulates heme-nitrosyl coordination. Furthermore, the domain architecture of a SONO ortholog cloned from Chlamydomonas reinhardtii indicates that NO signaling through cyclic guanosine monophosphate arose before the origin of multicellular eukaryotes. Our findings have broad implications for understanding bacterial responses to NO, as well as for the activation of mammalian NO-sensitive guanylyl cyclase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nioche, Pierre -- Berka, Vladimir -- Vipond, Julia -- Minton, Nigel -- Tsai, Ah-Lim -- Raman, C S -- AY343540/PHS HHS/ -- R01 AI054444/AI/NIAID NIH HHS/ -- R01 AI054444-05/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2004 Nov 26;306(5701):1550-3. Epub 2004 Oct 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Structural Biology Research Center and Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15472039" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Bacterial Proteins/chemistry/metabolism ; Biological Evolution ; Carrier Proteins/*chemistry/genetics/*metabolism ; Chemotaxis ; Chlamydomonas reinhardtii/chemistry/genetics/metabolism ; Cloning, Molecular ; Clostridium botulinum/*chemistry/genetics/*metabolism ; Crystallography, X-Ray ; Electron Spin Resonance Spectroscopy ; Escherichia coli/genetics/growth & development ; Guanylate Cyclase ; Heme/chemistry/metabolism ; Hemeproteins/*chemistry/genetics/*metabolism ; Humans ; Hydrogen Bonding ; Ligands ; Models, Molecular ; Molecular Sequence Data ; Nitric Oxide/*metabolism ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Protoporphyrins/analysis/metabolism ; Receptors, Cytoplasmic and Nuclear/chemistry/metabolism ; Sequence Alignment ; Signal Transduction ; Static Electricity ; Thermoanaerobacter/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-02-26
    Description: We identified axonal defects in mouse models of Alzheimer's disease that preceded known disease-related pathology by more than a year; we observed similar axonal defects in the early stages of Alzheimer's disease in humans. Axonal defects consisted of swellings that accumulated abnormal amounts of microtubule-associated and molecular motor proteins, organelles, and vesicles. Impairing axonal transport by reducing the dosage of a kinesin molecular motor protein enhanced the frequency of axonal defects and increased amyloid-beta peptide levels and amyloid deposition. Reductions in microtubule-dependent transport may stimulate proteolytic processing of beta-amyloid precursor protein, resulting in the development of senile plaques and Alzheimer's disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stokin, Gorazd B -- Lillo, Concepcion -- Falzone, Tomas L -- Brusch, Richard G -- Rockenstein, Edward -- Mount, Stephanie L -- Raman, Rema -- Davies, Peter -- Masliah, Eliezer -- Williams, David S -- Goldstein, Lawrence S B -- EY12598/EY/NEI NIH HHS/ -- EY13408/EY/NEI NIH HHS/ -- P50 AG05131/AG/NIA NIH HHS/ -- R01 EY007042/EY/NEI NIH HHS/ -- R01 EY007042-19/EY/NEI NIH HHS/ -- R01 EY013408/EY/NEI NIH HHS/ -- R01 EY013408-02/EY/NEI NIH HHS/ -- New York, N.Y. -- Science. 2005 Feb 25;307(5713):1282-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute and Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego (UCSD), 9500 Gilman Drive, La Jolla, CA 92093, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15731448" target="_blank"〉PubMed〈/a〉
    Keywords: Aged ; Aged, 80 and over ; Alzheimer Disease/genetics/*metabolism/*pathology ; Amyloid beta-Peptides/metabolism ; Amyloid beta-Protein Precursor/metabolism ; Animals ; *Axonal Transport ; Axons/*pathology/physiology ; Basal Nucleus of Meynert/pathology ; Brain/*metabolism/*pathology ; Cells, Cultured ; Cytoplasmic Vesicles/ultrastructure ; Female ; Hippocampus ; Humans ; Kinesin/metabolism ; Male ; Mice ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Microtubule-Associated Proteins/genetics/metabolism ; Neurons/metabolism ; Organelles/ultrastructure ; Plaque, Amyloid/pathology ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-03-19
    Description: The PARKIN ubiquitin ligase (also known as PARK2) and its regulatory kinase PINK1 (also known as PARK6), often mutated in familial early-onset Parkinson's disease, have central roles in mitochondrial homeostasis and mitophagy. Whereas PARKIN is recruited to the mitochondrial outer membrane (MOM) upon depolarization via PINK1 action and can ubiquitylate porin, mitofusin and Miro proteins on the MOM, the full repertoire of PARKIN substrates--the PARKIN-dependent ubiquitylome--remains poorly defined. Here we use quantitative diGly capture proteomics (diGly) to elucidate the ubiquitylation site specificity and topology of PARKIN-dependent target modification in response to mitochondrial depolarization. Hundreds of dynamically regulated ubiquitylation sites in dozens of proteins were identified, with strong enrichment for MOM proteins, indicating that PARKIN dramatically alters the ubiquitylation status of the mitochondrial proteome. Using complementary interaction proteomics, we found depolarization-dependent PARKIN association with numerous MOM targets, autophagy receptors, and the proteasome. Mutation of the PARKIN active site residue C431, which has been found mutated in Parkinson's disease patients, largely disrupts these associations. Structural and topological analysis revealed extensive conservation of PARKIN-dependent ubiquitylation sites on cytoplasmic domains in vertebrate and Drosophila melanogaster MOM proteins. These studies provide a resource for understanding how the PINK1-PARKIN pathway re-sculpts the proteome to support mitochondrial homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641819/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641819/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sarraf, Shireen A -- Raman, Malavika -- Guarani-Pereira, Virginia -- Sowa, Mathew E -- Huttlin, Edward L -- Gygi, Steven P -- Harper, J Wade -- CA139885/CA/NCI NIH HHS/ -- GM067945/GM/NIGMS NIH HHS/ -- GM070565/GM/NIGMS NIH HHS/ -- GM095567/GM/NIGMS NIH HHS/ -- R01 GM067945/GM/NIGMS NIH HHS/ -- R01 GM070565/GM/NIGMS NIH HHS/ -- R01 GM095567/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 Apr 18;496(7445):372-6. doi: 10.1038/nature12043. Epub 2013 Mar 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23503661" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Drosophila Proteins/metabolism ; Drosophila melanogaster/metabolism ; Humans ; *Membrane Potential, Mitochondrial ; Mice ; Mitochondria/chemistry/*metabolism ; Mitochondrial Membranes/*metabolism ; Mitochondrial Proteins/*metabolism ; Protein Kinases/metabolism ; Proteome/*metabolism ; Proteomics ; Ubiquitin-Protein Ligases/*metabolism ; *Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-03-31
    Description: The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of 'personalized' therapeutic regimens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320027/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320027/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barretina, Jordi -- Caponigro, Giordano -- Stransky, Nicolas -- Venkatesan, Kavitha -- Margolin, Adam A -- Kim, Sungjoon -- Wilson, Christopher J -- Lehar, Joseph -- Kryukov, Gregory V -- Sonkin, Dmitriy -- Reddy, Anupama -- Liu, Manway -- Murray, Lauren -- Berger, Michael F -- Monahan, John E -- Morais, Paula -- Meltzer, Jodi -- Korejwa, Adam -- Jane-Valbuena, Judit -- Mapa, Felipa A -- Thibault, Joseph -- Bric-Furlong, Eva -- Raman, Pichai -- Shipway, Aaron -- Engels, Ingo H -- Cheng, Jill -- Yu, Guoying K -- Yu, Jianjun -- Aspesi, Peter Jr -- de Silva, Melanie -- Jagtap, Kalpana -- Jones, Michael D -- Wang, Li -- Hatton, Charles -- Palescandolo, Emanuele -- Gupta, Supriya -- Mahan, Scott -- Sougnez, Carrie -- Onofrio, Robert C -- Liefeld, Ted -- MacConaill, Laura -- Winckler, Wendy -- Reich, Michael -- Li, Nanxin -- Mesirov, Jill P -- Gabriel, Stacey B -- Getz, Gad -- Ardlie, Kristin -- Chan, Vivien -- Myer, Vic E -- Weber, Barbara L -- Porter, Jeff -- Warmuth, Markus -- Finan, Peter -- Harris, Jennifer L -- Meyerson, Matthew -- Golub, Todd R -- Morrissey, Michael P -- Sellers, William R -- Schlegel, Robert -- Garraway, Levi A -- DP2 OD002750/OD/NIH HHS/ -- DP2 OD002750-01/OD/NIH HHS/ -- R33 CA126674/CA/NCI NIH HHS/ -- R33 CA126674-04/CA/NCI NIH HHS/ -- R33 CA155554/CA/NCI NIH HHS/ -- R33 CA155554-02/CA/NCI NIH HHS/ -- England -- Nature. 2012 Mar 28;483(7391):603-7. doi: 10.1038/nature11003.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22460905" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/pharmacology ; Cell Line, Tumor ; Cell Lineage ; Chromosomes, Human/genetics ; Clinical Trials as Topic/methods ; *Databases, Factual ; Drug Screening Assays, Antitumor/*methods ; *Encyclopedias as Topic ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Genes, ras/genetics ; Genome, Human/genetics ; Genomics ; Humans ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors/metabolism ; *Models, Biological ; Neoplasms/*drug therapy/genetics/metabolism/*pathology ; Pharmacogenetics ; Plasma Cells/cytology/drug effects/metabolism ; Precision Medicine/methods ; Receptor, IGF Type 1/antagonists & inhibitors/metabolism ; Receptors, Aryl Hydrocarbon/genetics/metabolism ; Sequence Analysis, DNA ; Topoisomerase Inhibitors/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-07-04
    Description: Recent reports of mild to severe influenza-like illness in humans caused by a novel swine-origin 2009 A(H1N1) influenza virus underscore the need to better understand the pathogenesis and transmission of these viruses in mammals. In this study, selected 2009 A(H1N1) influenza isolates were assessed for their ability to cause disease in mice and ferrets and compared with a contemporary seasonal H1N1 virus for their ability to transmit to naive ferrets through respiratory droplets. In contrast to seasonal influenza H1N1 virus, 2009 A(H1N1) influenza viruses caused increased morbidity, replicated to higher titers in lung tissue, and were recovered from the intestinal tract of intranasally inoculated ferrets. The 2009 A(H1N1) influenza viruses exhibited less efficient respiratory droplet transmission in ferrets in comparison with the highly transmissible phenotype of a seasonal H1N1 virus. Transmission of the 2009 A(H1N1) influenza viruses was further corroborated by characterizing the binding specificity of the viral hemagglutinin to the sialylated glycan receptors (in the human host) by use of dose-dependent direct receptor-binding and human lung tissue-binding assays.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953552/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953552/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Maines, Taronna R -- Jayaraman, Akila -- Belser, Jessica A -- Wadford, Debra A -- Pappas, Claudia -- Zeng, Hui -- Gustin, Kortney M -- Pearce, Melissa B -- Viswanathan, Karthik -- Shriver, Zachary H -- Raman, Rahul -- Cox, Nancy J -- Sasisekharan, Ram -- Katz, Jacqueline M -- Tumpey, Terrence M -- GM 57073/GM/NIGMS NIH HHS/ -- R01 GM057073/GM/NIGMS NIH HHS/ -- R01 GM057073-09/GM/NIGMS NIH HHS/ -- R37 GM057073/GM/NIGMS NIH HHS/ -- U54 GM062116/GM/NIGMS NIH HHS/ -- U54 GM062116-09/GM/NIGMS NIH HHS/ -- U54 GM62116/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Jul 24;325(5939):484-7. doi: 10.1126/science.1177238. Epub 2009 Jul 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19574347" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Animals ; Disease Models, Animal ; Female ; Ferrets ; Hemagglutinin Glycoproteins, Influenza Virus/chemistry/metabolism ; Humans ; Influenza A Virus, H1N1 Subtype/*pathogenicity ; Influenza, Human/transmission/*virology ; Intestines/virology ; Male ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Orthomyxoviridae Infections/*transmission/*virology ; Protein Binding ; Receptors, Virus/metabolism ; Respiratory System/virology ; Swine ; Virus Replication
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...