ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-01-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hurst, Laurence D -- England -- Nature. 2009 Jan 29;457(7229):543-4. doi: 10.1038/457543a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19177117" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bias (Epidemiology) ; DNA Repair/*genetics ; *Evolution, Molecular ; Gene Conversion/genetics ; Genome, Human/*genetics ; Genomics ; Humans ; Models, Genetic ; Primates/genetics ; *Selection, Genetic ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-12-03
    Description: Lenalidomide is a drug with clinical efficacy in multiple myeloma and other B cell neoplasms, but its mechanism of action is unknown. Using quantitative proteomics, we found that lenalidomide causes selective ubiquitination and degradation of two lymphoid transcription factors, IKZF1 and IKZF3, by the CRBN-CRL4 ubiquitin ligase. IKZF1 and IKZF3 are essential transcription factors in multiple myeloma. A single amino acid substitution of IKZF3 conferred resistance to lenalidomide-induced degradation and rescued lenalidomide-induced inhibition of cell growth. Similarly, we found that lenalidomide-induced interleukin-2 production in T cells is due to depletion of IKZF1 and IKZF3. These findings reveal a previously unknown mechanism of action for a therapeutic agent: alteration of the activity of an E3 ubiquitin ligase, leading to selective degradation of specific targets.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077049/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077049/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kronke, Jan -- Udeshi, Namrata D -- Narla, Anupama -- Grauman, Peter -- Hurst, Slater N -- McConkey, Marie -- Svinkina, Tanya -- Heckl, Dirk -- Comer, Eamon -- Li, Xiaoyu -- Ciarlo, Christie -- Hartman, Emily -- Munshi, Nikhil -- Schenone, Monica -- Schreiber, Stuart L -- Carr, Steven A -- Ebert, Benjamin L -- P01 CA078378/CA/NCI NIH HHS/ -- P01 CA108631/CA/NCI NIH HHS/ -- P01 CA155258/CA/NCI NIH HHS/ -- P50 CA100707/CA/NCI NIH HHS/ -- R01 HL082945/HL/NHLBI NIH HHS/ -- R01HL082945/HL/NHLBI NIH HHS/ -- RL1- HG004671/HG/NHGRI NIH HHS/ -- New York, N.Y. -- Science. 2014 Jan 17;343(6168):301-5. doi: 10.1126/science.1244851. Epub 2013 Nov 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Brigham and Women's Hospital, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24292625" target="_blank"〉PubMed〈/a〉
    Keywords: Antineoplastic Agents/*pharmacology ; Cell Line, Tumor ; HEK293 Cells ; Humans ; Ikaros Transcription Factor/genetics/*metabolism ; Interleukin-2/biosynthesis ; Multiple Myeloma/*metabolism ; Proteolysis ; T-Lymphocytes/drug effects/metabolism ; Thalidomide/*analogs & derivatives/pharmacology ; Ubiquitination
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2011-04-02
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hurst, Laurence D -- England -- Nature. 2011 Mar 31;471(7340):582-3. doi: 10.1038/471582a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21455166" target="_blank"〉PubMed〈/a〉
    Keywords: Continental Population Groups/genetics ; Crohn Disease/*genetics ; Humans ; MicroRNAs/*genetics/metabolism ; Models, Genetic ; Point Mutation/*genetics ; RNA Splicing/genetics ; RNA, Messenger/*genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-11-09
    Description: Defects in the availability of haem substrates or the catalytic activity of the terminal enzyme in haem biosynthesis, ferrochelatase (Fech), impair haem synthesis and thus cause human congenital anaemias. The interdependent functions of regulators of mitochondrial homeostasis and enzymes responsible for haem synthesis are largely unknown. To investigate this we used zebrafish genetic screens and cloned mitochondrial ATPase inhibitory factor 1 (atpif1) from a zebrafish mutant with profound anaemia, pinotage (pnt (tq209)). Here we describe a direct mechanism establishing that Atpif1 regulates the catalytic efficiency of vertebrate Fech to synthesize haem. The loss of Atpif1 impairs haemoglobin synthesis in zebrafish, mouse and human haematopoietic models as a consequence of diminished Fech activity and elevated mitochondrial pH. To understand the relationship between mitochondrial pH, redox potential, [2Fe-2S] clusters and Fech activity, we used genetic complementation studies of Fech constructs with or without [2Fe-2S] clusters in pnt, as well as pharmacological agents modulating mitochondrial pH and redox potential. The presence of [2Fe-2S] cluster renders vertebrate Fech vulnerable to perturbations in Atpif1-regulated mitochondrial pH and redox potential. Therefore, Atpif1 deficiency reduces the efficiency of vertebrate Fech to synthesize haem, resulting in anaemia. The identification of mitochondrial Atpif1 as a regulator of haem synthesis advances our understanding of the mechanisms regulating mitochondrial haem homeostasis and red blood cell development. An ATPIF1 deficiency may contribute to important human diseases, such as congenital sideroblastic anaemias and mitochondriopathies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504625/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504625/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shah, Dhvanit I -- Takahashi-Makise, Naoko -- Cooney, Jeffrey D -- Li, Liangtao -- Schultz, Iman J -- Pierce, Eric L -- Narla, Anupama -- Seguin, Alexandra -- Hattangadi, Shilpa M -- Medlock, Amy E -- Langer, Nathaniel B -- Dailey, Tamara A -- Hurst, Slater N -- Faccenda, Danilo -- Wiwczar, Jessica M -- Heggers, Spencer K -- Vogin, Guillaume -- Chen, Wen -- Chen, Caiyong -- Campagna, Dean R -- Brugnara, Carlo -- Zhou, Yi -- Ebert, Benjamin L -- Danial, Nika N -- Fleming, Mark D -- Ward, Diane M -- Campanella, Michelangelo -- Dailey, Harry A -- Kaplan, Jerry -- Paw, Barry H -- K01 DK085217/DK/NIDDK NIH HHS/ -- P01 HL032262/HL/NHLBI NIH HHS/ -- P30 DK072437/DK/NIDDK NIH HHS/ -- R01 DK052380/DK/NIDDK NIH HHS/ -- R01 DK070838/DK/NIDDK NIH HHS/ -- R01 DK096051/DK/NIDDK NIH HHS/ -- R01 HL082945/HL/NHLBI NIH HHS/ -- T32 GM007223/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Nov 22;491(7425):608-12. doi: 10.1038/nature11536. Epub 2012 Nov 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23135403" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia, Sideroblastic/genetics/metabolism/pathology ; Animals ; Disease Models, Animal ; Erythroblasts/cytology/*metabolism ; *Erythropoiesis ; Ferrochelatase/metabolism ; Genetic Complementation Test ; Heme/*biosynthesis ; Humans ; Hydrogen-Ion Concentration ; Mice ; Mitochondria/*metabolism/pathology ; Mitochondrial Proteins/deficiency/genetics/*metabolism ; Oxidation-Reduction ; Proteins/genetics/*metabolism ; Zebrafish/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-10-16
    Description: Naive embryonic stem cells hold great promise for research and therapeutics as they have broad and robust developmental potential. While such cells are readily derived from mouse blastocysts it has not been possible to isolate human equivalents easily, although human naive-like cells have been artificially generated (rather than extracted) by coercion of human primed embryonic stem cells by modifying culture conditions or through transgenic modification. Here we show that a sub-population within cultures of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) manifests key properties of naive state cells. These naive-like cells can be genetically tagged, and are associated with elevated transcription of HERVH, a primate-specific endogenous retrovirus. HERVH elements provide functional binding sites for a combination of naive pluripotency transcription factors, including LBP9, recently recognized as relevant to naivety in mice. LBP9-HERVH drives hESC-specific alternative and chimaeric transcripts, including pluripotency-modulating long non-coding RNAs. Disruption of LBP9, HERVH and HERVH-derived transcripts compromises self-renewal. These observations define HERVH expression as a hallmark of naive-like hESCs, and establish novel primate-specific transcriptional circuitry regulating pluripotency.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Jichang -- Xie, Gangcai -- Singh, Manvendra -- Ghanbarian, Avazeh T -- Rasko, Tamas -- Szvetnik, Attila -- Cai, Huiqiang -- Besser, Daniel -- Prigione, Alessandro -- Fuchs, Nina V -- Schumann, Gerald G -- Chen, Wei -- Lorincz, Matthew C -- Ivics, Zoltan -- Hurst, Laurence D -- Izsvak, Zsuzsanna -- England -- Nature. 2014 Dec 18;516(7531):405-9. doi: 10.1038/nature13804. Epub 2014 Oct 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Delbruck-Center for Molecular Medicine, Robert-Rossle-Strasse 10, 13125 Berlin, Germany. ; 1] Max-Delbruck-Center for Molecular Medicine, Robert-Rossle-Strasse 10, 13125 Berlin, Germany [2] Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, 320 Yueyang Road, Shanghai 200031, China. ; University of Bath, Department of Biology and Biochemistry, Bath, Somerset BA2 7AY, UK. ; 1] Max-Delbruck-Center for Molecular Medicine, Robert-Rossle-Strasse 10, 13125 Berlin, Germany [2] Paul-Ehrlich-Institute, Division of Medical Biotechnology, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany. ; Paul-Ehrlich-Institute, Division of Medical Biotechnology, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany. ; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25317556" target="_blank"〉PubMed〈/a〉
    Keywords: Cells, Cultured ; DNA Transposable Elements ; Embryonic Stem Cells/*cytology/*metabolism ; Endogenous Retroviruses/genetics/*metabolism ; Gene Expression Profiling ; Genetic Markers ; Humans ; Induced Pluripotent Stem Cells/cytology/*physiology/virology ; RNA, Long Noncoding/metabolism ; Transcription Factors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-20
    Description: Science, technology, engineering, and mathematics (STEM) graduate students are often encouraged to maximize their engagement with supervised research and minimize teaching obligations. However, the process of teaching students engaged in inquiry provides practice in the application of important research skills. Using a performance rubric, we compared the quality of methodological skills demonstrated in written research proposals for two groups of early career graduate students (those with both teaching and research responsibilities and those with only research responsibilities) at the beginning and end of an academic year. After statistically controlling for preexisting differences between groups, students who both taught and conducted research demonstrate significantly greater improvement in their abilities to generate testable hypotheses and design valid experiments. These results indicate that teaching experience can contribute substantially to the improvement of essential research skills.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feldon, David F -- Peugh, James -- Timmerman, Briana E -- Maher, Michelle A -- Hurst, Melissa -- Strickland, Denise -- Gilmore, Joanna A -- Stiegelmeyer, Cindy -- New York, N.Y. -- Science. 2011 Aug 19;333(6045):1037-9. doi: 10.1126/science.1204109.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Curriculum, Instruction, and Special Education and Center for the Advanced Study of Teaching and Learning-Higher Education, University of Virginia, Charlottesville, VA 22904-4261, USA. dff2j@virginia.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21852504" target="_blank"〉PubMed〈/a〉
    Keywords: *Education, Graduate ; Humans ; *Research ; *Research Design ; *Students ; *Teaching
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1982-01-08
    Description: With an alpha-galactosidase, B erythrocytes can be converted to blood group O under conditions that neither impair their viability in vitro nor affect their ability to survive normally after transfusion to individuals of groups O, A, and B. Such an approach has the potential for producing enzymatically converted group O cells for use in transfusion therapy. It should also be possible to convert A cells to group O by using the appropriate alpha-N-acetylgalactosaminidase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goldstein, J -- Siviglia, G -- Hurst, R -- Lenny, L -- Reich, L -- New York, N.Y. -- Science. 1982 Jan 8;215(4529):168-70.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/6274021" target="_blank"〉PubMed〈/a〉
    Keywords: *ABO Blood-Group System ; Blood Transfusion ; Erythrocyte Aging ; Erythrocyte Membrane/immunology ; Galactosidases/*pharmacology ; Glycophorin/metabolism ; Humans ; alpha-Galactosidase/*pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-07-02
    Description: Lenalidomide is a highly effective treatment for myelodysplastic syndrome (MDS) with deletion of chromosome 5q (del(5q)). Here, we demonstrate that lenalidomide induces the ubiquitination of casein kinase 1A1 (CK1alpha) by the E3 ubiquitin ligase CUL4-RBX1-DDB1-CRBN (known as CRL4(CRBN)), resulting in CK1alpha degradation. CK1alpha is encoded by a gene within the common deleted region for del(5q) MDS and haploinsufficient expression sensitizes cells to lenalidomide therapy, providing a mechanistic basis for the therapeutic window of lenalidomide in del(5q) MDS. We found that mouse cells are resistant to lenalidomide but that changing a single amino acid in mouse Crbn to the corresponding human residue enables lenalidomide-dependent degradation of CK1alpha. We further demonstrate that minor side chain modifications in thalidomide and a novel analogue, CC-122, can modulate the spectrum of substrates targeted by CRL4(CRBN). These findings have implications for the clinical activity of lenalidomide and related compounds, and demonstrate the therapeutic potential of novel modulators of E3 ubiquitin ligases.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kronke, Jan -- Fink, Emma C -- Hollenbach, Paul W -- MacBeth, Kyle J -- Hurst, Slater N -- Udeshi, Namrata D -- Chamberlain, Philip P -- Mani, D R -- Man, Hon Wah -- Gandhi, Anita K -- Svinkina, Tanya -- Schneider, Rebekka K -- McConkey, Marie -- Jaras, Marcus -- Griffiths, Elizabeth -- Wetzler, Meir -- Bullinger, Lars -- Cathers, Brian E -- Carr, Steven A -- Chopra, Rajesh -- Ebert, Benjamin L -- P01 CA066996/CA/NCI NIH HHS/ -- P01CA108631/CA/NCI NIH HHS/ -- R01 HL082945/HL/NHLBI NIH HHS/ -- R01HL082945/HL/NHLBI NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- T32GM007753/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jul 9;523(7559):183-8. doi: 10.1038/nature14610. Epub 2015 Jul 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Brigham and Women's Hospital, Division of Hematology, Boston, Massachusetts 02115, USA [2] University Hospital of Ulm, Department of Internal Medicine III, 89081 Ulm, Germany [3] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] Brigham and Women's Hospital, Division of Hematology, Boston, Massachusetts 02115, USA [2] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; Celgene Corporation, San Diego, California 92121, USA. ; Brigham and Women's Hospital, Division of Hematology, Boston, Massachusetts 02115, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; Roswell Park Cancer Institute, Buffalo, New York 14263, USA. ; University Hospital of Ulm, Department of Internal Medicine III, 89081 Ulm, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26131937" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Casein Kinase I/genetics/*metabolism ; Cell Line ; Gene Expression Regulation/drug effects ; HEK293 Cells ; Humans ; Immunologic Factors/pharmacology ; Jurkat Cells ; K562 Cells ; Mice ; Molecular Sequence Data ; Myelodysplastic Syndromes/*genetics/*physiopathology ; Peptide Hydrolases/chemistry ; Proteolysis/drug effects ; Sequence Alignment ; Sequence Deletion ; Species Specificity ; Thalidomide/*analogs & derivatives/pharmacology ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitination/*drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...