ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Humans  (2)
  • Inhomogeneous, disordered, and partially ordered systems  (2)
  • 1
    Publication Date: 2018-11-17
    Description: Author(s): G. Arregui, D. Navarro-Urrios, N. Kehagias, C. M. Sotomayor Torres, and P. D. García All-optical modulation of light relies on exploiting intrinsic material nonlinearities [V. R. Almeida et al. , Nature 431 , 1081 (2004) ]. However, this optical control is rather challenging due to the weak dependence of the refractive index and absorption coefficients on the concentration of free car... [Phys. Rev. B 98, 180202(R)] Published Fri Nov 16, 2018
    Keywords: Inhomogeneous, disordered, and partially ordered systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-18
    Description: During endocytosis, energy is invested to narrow the necks of cargo-containing plasma membrane invaginations to radii at which the opposing segments spontaneously coalesce, thereby leading to the detachment by scission of endocytic uptake carriers. In the clathrin pathway, dynamin uses mechanical energy from GTP hydrolysis to this effect, assisted by the BIN/amphiphysin/Rvs (BAR) domain-containing protein endophilin. Clathrin-independent endocytic events are often less reliant on dynamin, and whether in these cases BAR domain proteins such as endophilin contribute to scission has remained unexplored. Here we show, in human and other mammalian cell lines, that endophilin-A2 (endoA2) specifically and functionally associates with very early uptake structures that are induced by the bacterial Shiga and cholera toxins, which are both clathrin-independent endocytic cargoes. In controlled in vitro systems, endoA2 reshapes membranes before scission. Furthermore, we demonstrate that endoA2, dynamin and actin contribute in parallel to the scission of Shiga-toxin-induced tubules. Our results establish a novel function of endoA2 in clathrin-independent endocytosis. They document that distinct scission factors operate in an additive manner, and predict that specificity within a given uptake process arises from defined combinations of universal modules. Our findings highlight a previously unnoticed link between membrane scaffolding by endoA2 and pulling-force-driven dynamic scission.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342003/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342003/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Renard, Henri-Francois -- Simunovic, Mijo -- Lemiere, Joel -- Boucrot, Emmanuel -- Garcia-Castillo, Maria Daniela -- Arumugam, Senthil -- Chambon, Valerie -- Lamaze, Christophe -- Wunder, Christian -- Kenworthy, Anne K -- Schmidt, Anne A -- McMahon, Harvey T -- Sykes, Cecile -- Bassereau, Patricia -- Johannes, Ludger -- R01 GM106720/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Jan 22;517(7535):493-6. doi: 10.1038/nature14064. Epub 2014 Dec 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institut Curie - Centre de Recherche, Endocytic Trafficking and Therapeutic Delivery group, 26 rue d'Ulm, 75248 Paris Cedex 05, France [2] CNRS UMR3666, 75005 Paris, France [3] U1143 INSERM, 75005 Paris, France. ; 1] Institut Curie - Centre de Recherche, Membrane and Cell Functions group, CNRS UMR 168, Physico-Chimie Curie, Universite Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France [2] The University of Chicago, Department of Chemistry, 5735 S Ellis Ave, Chicago, Ilinois 60637, USA. ; 1] Institut Curie - Centre de Recherche, Biomimetism of Cell Movement group, CNRS UMR 168, Physico-Chimie Curie, Universite Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France [2] Universite Paris Diderot, Sorbonne Paris Cite, 75205 Paris, France. ; Institute of Structural and Molecular Biology, University College London &Birkbeck College, London WC1E 6BT, UK. ; 1] CNRS UMR3666, 75005 Paris, France [2] U1143 INSERM, 75005 Paris, France [3] Institut Curie - Centre de Recherche, Membrane Dynamics and Mechanics of Intracellular Signaling group, 26 rue d'Ulm, 75248 Paris Cedex 05, France. ; Vanderbilt School of Medicine, Department of Molecular Physiology and Biophysics, 718 Light Hall, Nashville, Tennessee 37232, USA. ; CNRS, UMR7592, Institut Jacques Monod, Universite Paris Diderot, Sorbonne Paris Cite, 15 rue Helene Brion, 75205 Paris Cedex 13, France. ; Medical Research Council, Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK. ; Institut Curie - Centre de Recherche, Biomimetism of Cell Movement group, CNRS UMR 168, Physico-Chimie Curie, Universite Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France. ; Institut Curie - Centre de Recherche, Membrane and Cell Functions group, CNRS UMR 168, Physico-Chimie Curie, Universite Pierre et Marie Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25517096" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Acyltransferases/*metabolism ; Animals ; Cell Line ; Cell Membrane/*metabolism ; Cholera Toxin/metabolism ; Clathrin ; Dynamins/metabolism ; *Endocytosis ; Humans ; Rats ; Shiga Toxin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-05-10
    Description: The Saccharomyces cerevisiae Pif1 helicase is the prototypical member of the Pif1 DNA helicase family, which is conserved from bacteria to humans. Here we show that exceptionally potent G-quadruplex unwinding is conserved among Pif1 helicases. Moreover, Pif1 helicases from organisms separated by more than 3 billion years of evolution suppressed DNA damage at G-quadruplex motifs in yeast. The G-quadruplex-induced damage generated in the absence of Pif1 helicases led to new genetic and epigenetic changes. Furthermore, when expressed in yeast, human PIF1 suppressed both G-quadruplex-associated DNA damage and telomere lengthening.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3680789/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3680789/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Paeschke, Katrin -- Bochman, Matthew L -- Garcia, P Daniela -- Cejka, Petr -- Friedman, Katherine L -- Kowalczykowski, Stephen C -- Zakian, Virginia A -- R01 GM026938/GM/NIGMS NIH HHS/ -- R01 GM041347/GM/NIGMS NIH HHS/ -- R01 GM043265/GM/NIGMS NIH HHS/ -- England -- Nature. 2013 May 23;497(7450):458-62. doi: 10.1038/nature12149. Epub 2013 May 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23657261" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Conserved Sequence ; DNA Damage/genetics ; DNA Helicases/deficiency/genetics/*metabolism ; Epigenesis, Genetic ; Evolution, Molecular ; *G-Quadruplexes ; Gene Silencing ; Genetic Complementation Test ; *Genomic Instability ; Humans ; Molecular Sequence Data ; Mutation Rate ; Saccharomyces cerevisiae/*genetics/*metabolism ; Saccharomyces cerevisiae Proteins/genetics ; Telomere Homeostasis/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-07
    Description: Author(s): P. D. García, G. Kiršanskė, A. Javadi, S. Stobbe, and P. Lodahl The development of nanoscale optical devices requires high-quality nanocavities to mediate the optical feedback. Any fabrication method will generate imperfections that may induce light loss, limiting the device performance. However, in some cases such disorder may enable new functionalities as, for example, in state-of-the art photonic-crystal waveguides where localization originates from the random multiple scattering of light. Understanding the different mechanisms leading to this type of localization is crucial to exploit disorder as a resource as well as to design structures which are more robust against disorder. [Phys. Rev. B 96, 144201] Published Fri Oct 06, 2017
    Keywords: Inhomogeneous, disordered, and partially ordered systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...