ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-12-01
    Description: Phosphoinositide (PI)-binding domains play critical roles in the intracellular localization of a variety of cell-signaling proteins. The 120-amino acid Phox homology (PX) domain targets proteins to organelle membranes through interactions between two conserved basic motifs within the PX domain and specific PIs. The combination of protein-lipid and protein-protein interactions ensures the proper localization and regulation of PX domain-containing proteins. Upon proper localization, PX domain-containing proteins can then bind to additional proteins and execute their functions in a diverse set of biological pathways, including intracellular protein transport, cell growth and survival, cytoskeletal organization, and neutrophil defense.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, T K -- Overduin, M -- Emr, S D -- New York, N.Y. -- Science. 2001 Nov 30;294(5548):1881-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Molecular Medicine and Howard Hughes Medical Institute, University of California at San Diego School of Medicine, La Jolla, CA 92093-0668, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11729306" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Carrier Proteins/chemistry/metabolism ; Humans ; Intracellular Membranes/*metabolism ; Models, Molecular ; NADPH Oxidase ; Phosphatidylinositol 3-Kinases/metabolism ; Phosphatidylinositols/*metabolism ; Phosphoproteins/*chemistry/*metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Protein Transport ; Signal Transduction ; Structure-Activity Relationship ; src Homology Domains
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-04-15
    Description: In insects, each olfactory sensory neuron expresses between one and three ligand-binding members of the olfactory receptor (OR) gene family, along with the highly conserved and broadly expressed Or83b co-receptor. The functional insect OR consists of a heteromeric complex of unknown stoichiometry but comprising at least one variable odorant-binding subunit and one constant Or83b family subunit. Insect ORs lack homology to G-protein-coupled chemosensory receptors in vertebrates and possess a distinct seven-transmembrane topology with the amino terminus located intracellularly. Here we provide evidence that heteromeric insect ORs comprise a new class of ligand-activated non-selective cation channels. Heterologous cells expressing silkmoth, fruitfly or mosquito heteromeric OR complexes showed extracellular Ca2+ influx and cation-non-selective ion conductance on stimulation with odorant. Odour-evoked OR currents are independent of known G-protein-coupled second messenger pathways. The fast response kinetics and OR-subunit-dependent K+ ion selectivity of the insect OR complex support the hypothesis that the complex between OR and Or83b itself confers channel activity. Direct evidence for odorant-gated channels was obtained by outside-out patch-clamp recording of Xenopus oocyte and HEK293T cell membranes expressing insect OR complexes. The ligand-gated ion channel formed by an insect OR complex seems to be the basis for a unique strategy that insects have acquired to respond to the olfactory environment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sato, Koji -- Pellegrino, Maurizio -- Nakagawa, Takao -- Nakagawa, Tatsuro -- Vosshall, Leslie B -- Touhara, Kazushige -- England -- Nature. 2008 Apr 24;452(7190):1002-6. doi: 10.1038/nature06850. Epub 2008 Apr 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrated Biosciences, The University of Tokyo, Chiba 277-8562, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18408712" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bombyx ; Calcium/metabolism ; Cell Line ; Culicidae ; Drosophila melanogaster ; Electric Conductivity ; HeLa Cells ; Heterotrimeric GTP-Binding Proteins ; Humans ; Insects/*chemistry ; *Ion Channel Gating ; Kinetics ; Ligands ; Odors/analysis ; Oocytes/metabolism ; Patch-Clamp Techniques ; Protein Subunits/chemistry/metabolism ; Receptors, Odorant/*chemistry/*metabolism ; Smell ; Xenopus laevis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-10-03
    Description: Intraspecific chemical communication is mediated by signals called pheromones. Caenorhabditis elegans secretes a mixture of small molecules (collectively termed dauer pheromone) that regulates entry into the alternate dauer larval stage and also modulates adult behavior via as yet unknown receptors. Here, we identify two heterotrimeric GTP-binding protein (G protein)-coupled receptors (GPCRs) that mediate dauer formation in response to a subset of dauer pheromone components. The SRBC-64 and SRBC-66 GPCRs are members of the large Caenorhabditis-specific SRBC subfamily and are expressed in the ASK chemosensory neurons, which are required for pheromone-induced dauer formation. Expression of both, but not each receptor alone, confers pheromone-mediated effects on heterologous cells. Identification of dauer pheromone receptors will allow a better understanding of the signaling cascades that transduce the context-dependent effects of ecologically important chemical signals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448937/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4448937/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Kyuhyung -- Sato, Koji -- Shibuya, Mayumi -- Zeiger, Danna M -- Butcher, Rebecca A -- Ragains, Justin R -- Clardy, Jon -- Touhara, Kazushige -- Sengupta, Piali -- F32 GM077943/GM/NIGMS NIH HHS/ -- P30 NS045713/NS/NINDS NIH HHS/ -- P30 NS45713/NS/NINDS NIH HHS/ -- R01 CA024487/CA/NCI NIH HHS/ -- R01 CA24487/CA/NCI NIH HHS/ -- R01 GM056223/GM/NIGMS NIH HHS/ -- R01 GM56223/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2009 Nov 13;326(5955):994-8. doi: 10.1126/science.1176331. Epub 2009 Oct 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19797623" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/genetics/*growth & development/*physiology ; Caenorhabditis elegans Proteins/genetics/physiology ; Calcium/metabolism ; Cell Line ; Chemoreceptor Cells/metabolism ; Cyclic AMP/metabolism ; Cyclic GMP/metabolism ; GTP-Binding Protein alpha Subunits, Gi-Go/physiology ; Gene Expression Regulation, Developmental ; Genes, Helminth ; Guanylate Cyclase/antagonists & inhibitors/metabolism ; Hexoses/chemistry/physiology ; Humans ; Mutation ; Pheromones/*physiology ; Receptors, G-Protein-Coupled ; Reproduction ; Signal Transduction ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1612-1112
    Keywords: Gas chromatography ; Headspace sampling ; Solid-phase microextraction (SPME) ; Nitrogen-phosphorus detection (NPD) ; Organophosphate pesticides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary Organosphosphate pesticides have been found extractable by headspace solid-phase microextraction (SPME), and the best conditions of their extraction from human whole blood and urine samples have been investigated. The body fluid samples containing nine pesticides (IBP, methyl parathion, fenitrothion, malathion, fenthion, isoxathion, ethion, EPN and phosalone) were heated at 100°C in a septum-capped vial in the presence of various combinations of acid and salts, and SPME fiber was exposed to the headspace of the vial to allow adsorption of the pesticides before capillary gas chromatography (GC) with nitrogen-phosphorus detection. The heating with distilled water/HCl/(NH4)2SO4/NaCl and with distilled water/HCl gave the best results for urine and whole blood, respectively. Recoveries of the nine pesticides were 0.8–10.6% except for phosalone (0.03%) for whole blood, and 3.8–40.2% for urine. The calibration curves for the pesticides showed linearity in the range of 50–400 ng/0.5 mL for whole blood except for malathion (100–400 ng/0.5 mL whole blood) and 7.5–120 ng/0.5 mL for urine except for phosalone (15–120 ng/0.5 mL urine) with detection limits of 2.2–40 ng/0.5 mL for whole blood and 0.8–12 ng/0.5 mL for urine.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1612-1112
    Keywords: Gas chromatography ; Local anaesthetics ; Solid phase micro extraction (SPME) ; Direct immersion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary Local anaesthetics have been shown to be extractable from human whole blood samples by direct immersion (DI)-solid phase micro extraction (SPME). After deproteinization with perchloric acid, the pH of the clear supernatants of human whole blood samples containing the drugs were adjusted to about 7 with 10 M NaOH in the presence of NaCl; a polydimethylsiloxanecoated SPME fiber was then immersed directly into the sample solution to allow adsorption of the drugs before capillary gas chromatography (GC) with flame ionization detection. The DI-SPME for 1-mL whole blood gave peaks for all the drugs; only a small amount of background noise appeared and this gave no problems in the detection of the drugs. Recoveries of the ten drugs from human whole blood was 0.74–19.7 %. The calibration curves for seven drugs showed linearity in the range of 0.25–12 μg mL−1 whole blood, with detection limits of 54–158 ng mL−1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1612-1112
    Keywords: Gas chromatography ; Solid-phase micro extraction (SPME) ; Headspace sampling ; Ethanol ; Alcohol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Summary Ethanol has been found extractable from human whole blood and urine samples by headspace solid-phase micro extraction (SPME) with a Carbowax/divinylbenzene-coated fiber. After heating a vial containing the body fluid sample with ethanol, and isobutanol as internal standard (IS) at 70°C in the presence of (NH4)2SO4, a Carbowax/divinylbenzene-coated SPME fiber was exposed in the headspace of the vial to allow adsorption of the compounds. The fiber needle was then injected into a middle-bore capillary gas chromatography (GC) port. The headspace SPME-GC gave intense peaks for both compounds; a small amount of background noises appeared, but did not interfere with the detection of the compounds. Recoveries of ethanol and IS were 0.049 and 0.026% for whole blood, respectively, and 0.054 and 0.085% for urine, respectively. The calibration curves for ethanol showed excellent linearity in the range of 80–5000 mg L−1 for whole blood and 40–5000 mg L−1 for urine; the detection limits for both samples were 20 and 10 mg L−1, respectively. The data on actual determination of ethanol after the drinking of beer are also presented for two subjects.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...