ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-02-27
    Description: Lung disease is the major cause of morbidity and mortality in cystic fibrosis, an autosomal recessive disease caused by mutations in CFTR. In cystic fibrosis, chronic infection and dysregulated neutrophilic inflammation lead to progressive airway destruction. The severity of cystic fibrosis lung disease has considerable heritability, independent of CFTR genotype. To identify genetic modifiers, here we performed a genome-wide single nucleotide polymorphism scan in one cohort of cystic fibrosis patients, replicating top candidates in an independent cohort. This approach identified IFRD1 as a modifier of cystic fibrosis lung disease severity. IFRD1 is a histone-deacetylase-dependent transcriptional co-regulator expressed during terminal neutrophil differentiation. Neutrophils, but not macrophages, from Ifrd1-deficient mice showed blunted effector function, associated with decreased NF-kappaB p65 transactivation. In vivo, IFRD1 deficiency caused delayed bacterial clearance from the airway, but also less inflammation and disease-a phenotype primarily dependent on haematopoietic cell expression, or lack of expression, of IFRD1. In humans, IFRD1 polymorphisms were significantly associated with variation in neutrophil effector function. These data indicate that IFRD1 modulates the pathogenesis of cystic fibrosis lung disease through the regulation of neutrophil effector function.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841516/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841516/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gu, YuanYuan -- Harley, Isaac T W -- Henderson, Lindsay B -- Aronow, Bruce J -- Vietor, Ilja -- Huber, Lukas A -- Harley, John B -- Kilpatrick, Jeffrey R -- Langefeld, Carl D -- Williams, Adrienne H -- Jegga, Anil G -- Chen, Jing -- Wills-Karp, Marsha -- Arshad, S Hasan -- Ewart, Susan L -- Thio, Chloe L -- Flick, Leah M -- Filippi, Marie-Dominique -- Grimes, H Leighton -- Drumm, Mitchell L -- Cutting, Garry R -- Knowles, Michael R -- Karp, Christopher L -- R01 AI024717/AI/NIAID NIH HHS/ -- R01 HL068890/HL/NHLBI NIH HHS/ -- R01 HL068890-01/HL/NHLBI NIH HHS/ -- R01 HL068927/HL/NHLBI NIH HHS/ -- R01 HL068927-01/HL/NHLBI NIH HHS/ -- R01 HL079312/HL/NHLBI NIH HHS/ -- R01 HL079312-01A1/HL/NHLBI NIH HHS/ -- R37 AI024717/AI/NIAID NIH HHS/ -- England -- Nature. 2009 Apr 23;458(7241):1039-42. doi: 10.1038/nature07811. Epub 2009 Feb 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Immunology, Cincinnati Children's Hospital Research Foundation and the University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19242412" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cells, Cultured ; Cohort Studies ; Cystic Fibrosis/*genetics/*pathology ; Disease Models, Animal ; Genotype ; Humans ; Immediate-Early Proteins/deficiency/*genetics ; Inflammation/genetics/pathology ; Mice ; Mice, Inbred C57BL ; Neutrophils/immunology/metabolism ; Polymorphism, Single Nucleotide/genetics ; Pseudomonas aeruginosa/immunology/pathogenicity ; Transcription Factor RelA/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2005-09-24
    Description: Aneuploidies are common chromosomal defects that result in growth and developmental deficits and high levels of lethality in humans. To gain insight into the biology of aneuploidies, we manipulated mouse embryonic stem cells and generated a trans-species aneuploid mouse line that stably transmits a freely segregating, almost complete human chromosome 21 (Hsa21). This "transchromosomic" mouse line, Tc1, is a model of trisomy 21, which manifests as Down syndrome (DS) in humans, and has phenotypic alterations in behavior, synaptic plasticity, cerebellar neuronal number, heart development, and mandible size that relate to human DS. Transchromosomic mouse lines such as Tc1 may represent useful genetic tools for dissecting other human aneuploidies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1378183/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1378183/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Doherty, Aideen -- Ruf, Sandra -- Mulligan, Claire -- Hildreth, Victoria -- Errington, Mick L -- Cooke, Sam -- Sesay, Abdul -- Modino, Sonie -- Vanes, Lesley -- Hernandez, Diana -- Linehan, Jacqueline M -- Sharpe, Paul T -- Brandner, Sebastian -- Bliss, Timothy V P -- Henderson, Deborah J -- Nizetic, Dean -- Tybulewicz, Victor L J -- Fisher, Elizabeth M C -- 076700/Wellcome Trust/United Kingdom -- MC_U117512674/Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2005 Sep 23;309(5743):2033-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurodegenerative Disease, Institute of Neurology, Queen Square, London WC1N 3BG, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16179473" target="_blank"〉PubMed〈/a〉
    Keywords: *Aneuploidy ; Animals ; Behavior, Animal ; Brain/pathology ; Cell Count ; Cell Line ; Chimera ; *Chromosomes, Human, Pair 21 ; *Disease Models, Animal ; *Down Syndrome/genetics/physiopathology ; Embryo, Mammalian/cytology ; Facial Bones/pathology ; Female ; Gene Expression ; *Genetic Engineering ; Genetic Markers ; Heart Defects, Congenital/embryology ; Hippocampus/physiopathology ; Humans ; Long-Term Potentiation ; Lymphocyte Activation ; Male ; Maze Learning ; Memory ; Mice ; Mice, Inbred Strains ; *Mice, Transgenic ; Neurons/cytology ; Oligonucleotide Array Sequence Analysis ; Phenotype ; Skull/pathology ; Stem Cells ; Synaptic Transmission ; T-Lymphocytes/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-01-16
    Description: The lack of Late Pleistocene human fossils from sub-Saharan Africa has limited paleontological testing of competing models of recent human evolution. We have dated a skull from Hofmeyr, South Africa, to 36.2 +/- 3.3 thousand years ago through a combination of optically stimulated luminescence and uranium-series dating methods. The skull is morphologically modern overall but displays some archaic features. Its strongest morphometric affinities are with Upper Paleolithic (UP) Eurasians rather than recent, geographically proximate people. The Hofmeyr cranium is consistent with the hypothesis that UP Eurasians descended from a population that emigrated from sub-Saharan Africa in the Late Pleistocene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grine, F E -- Bailey, R M -- Harvati, K -- Nathan, R P -- Morris, A G -- Henderson, G M -- Ribot, I -- Pike, A W G -- New York, N.Y. -- Science. 2007 Jan 12;315(5809):226-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Anthropology and Anatomical Sciences, Stony Brook University, Stony Brook, NY 11794-4364, USA. fgrine@notes.cc.sunysb.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17218524" target="_blank"〉PubMed〈/a〉
    Keywords: Africa South of the Sahara ; Asia ; Emigration and Immigration ; Europe ; *Fossils ; Humans ; Mandible/anatomy & histology ; Maxilla/anatomy & histology ; Molar/anatomy & histology ; Paleodontology ; *Skull/anatomy & histology ; South Africa ; Time
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-08-02
    Description: The generation of pluripotent stem cells from an individual patient would enable the large-scale production of the cell types affected by that patient's disease. These cells could in turn be used for disease modeling, drug discovery, and eventually autologous cell replacement therapies. Although recent studies have demonstrated the reprogramming of human fibroblasts to a pluripotent state, it remains unclear whether these induced pluripotent stem (iPS) cells can be produced directly from elderly patients with chronic disease. We have generated iPS cells from an 82-year-old woman diagnosed with a familial form of amyotrophic lateral sclerosis (ALS). These patient-specific iPS cells possess properties of embryonic stem cells and were successfully directed to differentiate into motor neurons, the cell type destroyed in ALS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dimos, John T -- Rodolfa, Kit T -- Niakan, Kathy K -- Weisenthal, Laurin M -- Mitsumoto, Hiroshi -- Chung, Wendy -- Croft, Gist F -- Saphier, Genevieve -- Leibel, Rudy -- Goland, Robin -- Wichterle, Hynek -- Henderson, Christopher E -- Eggan, Kevin -- New York, N.Y. -- Science. 2008 Aug 29;321(5893):1218-21. doi: 10.1126/science.1158799. Epub 2008 Jul 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard Stem Cell Institute, Stowers Medical Institute, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18669821" target="_blank"〉PubMed〈/a〉
    Keywords: Aged, 80 and over ; Amyotrophic Lateral Sclerosis/genetics/*pathology/physiopathology ; *Cell Differentiation ; Cell Line ; *Cellular Reprogramming ; Embryonic Stem Cells/cytology ; Female ; Fibroblasts/*cytology ; Gene Expression ; Humans ; Motor Neurons/*cytology/metabolism ; Neuroglia/cytology ; Pluripotent Stem Cells/*cytology ; Retroviridae/genetics ; Spinal Cord/cytology ; Superoxide Dismutase/genetics/metabolism ; Transcription Factors/genetics/metabolism ; Transduction, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...