ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-06-02
    Description: The generation of induced pluripotent stem (iPS) cells has enabled the derivation of patient-specific pluripotent cells and provided valuable experimental platforms to model human disease. Patient-specific iPS cells are also thought to hold great therapeutic potential, although direct evidence for this is still lacking. Here we show that, on correction of the genetic defect, somatic cells from Fanconi anaemia patients can be reprogrammed to pluripotency to generate patient-specific iPS cells. These cell lines appear indistinguishable from human embryonic stem cells and iPS cells from healthy individuals. Most importantly, we show that corrected Fanconi-anaemia-specific iPS cells can give rise to haematopoietic progenitors of the myeloid and erythroid lineages that are phenotypically normal, that is, disease-free. These data offer proof-of-concept that iPS cell technology can be used for the generation of disease-corrected, patient-specific cells with potential value for cell therapy applications.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720823/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2720823/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Raya, Angel -- Rodriguez-Piza, Ignasi -- Guenechea, Guillermo -- Vassena, Rita -- Navarro, Susana -- Barrero, Maria Jose -- Consiglio, Antonella -- Castella, Maria -- Rio, Paula -- Sleep, Eduard -- Gonzalez, Federico -- Tiscornia, Gustavo -- Garreta, Elena -- Aasen, Trond -- Veiga, Anna -- Verma, Inder M -- Surralles, Jordi -- Bueren, Juan -- Izpisua Belmonte, Juan Carlos -- R01 HL053670/HL/NHLBI NIH HHS/ -- R01 HL053670-14/HL/NHLBI NIH HHS/ -- England -- Nature. 2009 Jul 2;460(7251):53-9. doi: 10.1038/nature08129. Epub 2009 May 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Regenerative Medicine in Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19483674" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cellular Reprogramming ; Fanconi Anemia/*pathology/*therapy ; Health ; Hematopoietic Stem Cells/*cytology/metabolism ; Humans ; Pluripotent Stem Cells/*cytology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...